【題目】已知函數(shù), 處取得極值,且,曲線處的切線與直線垂直.

(Ⅰ)求的解析式;

(Ⅱ)證明關(guān)于的方程至多只有兩個(gè)實(shí)數(shù)根(其中的導(dǎo)函數(shù), 是自然對(duì)數(shù)的底數(shù)).

【答案】(Ⅰ)(Ⅱ)見(jiàn)解析.

【解析】試題分析:先求,根據(jù)韋達(dá)定理及列出關(guān)于 的方程組,進(jìn)而可得結(jié)果;(圓方程等價(jià)于,令,研究函數(shù) 的單調(diào)性,討論兩種情況分別證明即可.

試題解析:(Ⅰ) ,因?yàn)?/span>處取得極值,

所以是方程的兩個(gè)根,則

,則,所以.

由已知曲線處的切線與直線垂直,所以可得,

,由此可得解得

所以

(Ⅱ)對(duì)于,

(1)當(dāng)時(shí),得,方程無(wú)實(shí)數(shù)根;

(2)當(dāng)時(shí),得,令,

當(dāng)時(shí), ;

當(dāng)時(shí), ;當(dāng)時(shí),

的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是

函數(shù)處分別取得極小值和極大值.

, ,

對(duì)于,由于恒成立,

是與軸有兩個(gè)交點(diǎn)、開(kāi)口向上的拋物線,

所以曲線軸有且只有兩個(gè)交點(diǎn),從而無(wú)最大值,

時(shí) ,直線與曲線至多有兩個(gè)交點(diǎn);

,直線與曲線只有一個(gè)交點(diǎn);

綜上所述,無(wú)論取何實(shí)數(shù),方程至多只有兩實(shí)數(shù)根.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn),橢圓的左,右頂點(diǎn)分別為.過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),且滿足,試問(wèn)直線的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1 , ACC1A1均為正方形,AB=AC=1,∠BAC=90,點(diǎn)D是棱B1C1的中點(diǎn).
(1)求證:AB1∥平面A1DC;
(2)求證:A1D⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司2016年前三個(gè)月的利潤(rùn)(單位:百萬(wàn)元)如下:

月份

1

2

3

利潤(rùn)

2

3.9

5.5

(1)求利潤(rùn)關(guān)于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預(yù)測(cè)4月和5月的利潤(rùn);

(3)試用(1)中求得的回歸方程預(yù)測(cè)該公司2016年從幾月份開(kāi)始利潤(rùn)超過(guò)1000萬(wàn)?

相關(guān)公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),順次連接橢圓的四個(gè)頂點(diǎn)得到的四邊形的面積為,點(diǎn).

(Ⅰ)求橢圓的方程.

(Ⅱ)已知點(diǎn),是橢圓上的兩點(diǎn).

(。┤,且為等邊三角形,求的面積;

(ⅱ)若,證明: 不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題
(1)在等比數(shù)列{an}中,a5=162,公比q=3,前n項(xiàng)和Sn=242,求首項(xiàng)a1和項(xiàng)數(shù)n.
(2)有四個(gè)數(shù),其中前三個(gè)數(shù)成等比數(shù)列,其積為216,后三個(gè)數(shù)成等差數(shù)列,其和為36,求這四個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線 ,曲線 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.

(Ⅰ)求曲線, 的極坐標(biāo)方程;

(Ⅱ)曲線 為參數(shù), , )分別交, , 兩點(diǎn),當(dāng)取何值時(shí), 取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,與軸的正半軸交于點(diǎn),右焦點(diǎn), 為坐標(biāo)原點(diǎn),且

(1)求橢圓的離心率;

(2)已知點(diǎn),過(guò)點(diǎn)任意作直線與橢圓交于兩點(diǎn),設(shè)直線的斜率,若,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

同步練習(xí)冊(cè)答案