【題目】某學(xué)校為了了解學(xué)生對《3.12植樹節(jié)》活動節(jié)日的相關(guān)內(nèi)容,學(xué)校進(jìn)行了一次10道題的問卷調(diào)查,從該校學(xué)生中隨機(jī)抽取50人,統(tǒng)計(jì)了每人答對的題數(shù),將統(tǒng)計(jì)結(jié)果分成,
,
,
,
五組,得到如下頻率分布直方圖.
(1)若答對一題得10分,答錯和未答不得分,估計(jì)這50名學(xué)生成績的平均分;
(2)若從答對題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人,求恰有1人答對題數(shù)在
內(nèi)的概率.
【答案】(1)63.5(2)
【解析】
(1)先根據(jù)頻率分布直方圖得到答對題數(shù)的平均數(shù),再乘以10即可.
(2)根據(jù)頻率分布直方圖得到答對題數(shù)在內(nèi)和在
內(nèi)的學(xué)生人數(shù),利用古典概型的概率求解.
(1)答對題數(shù)的平均數(shù)為,
所以這50人的成績平均分約為.
(2)答對題數(shù)在內(nèi)的學(xué)生有
人,記為
答對題數(shù)在內(nèi)的學(xué)生有
人,記為
從答對題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人的情況有
,
,
,
,
,
,
,
,
,
,
,
,
,
,
共15種
其中恰有1人答對題數(shù)在內(nèi)的情況有8種
所以恰有1人答對題數(shù)在內(nèi)的概率
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的零點(diǎn)構(gòu)成一個公差為
的等差數(shù)列,把函數(shù)
的圖象沿
軸向右平移
個單位,得到函數(shù)
的圖象.關(guān)于函數(shù)
,下列說法正確的是( )
A. 在上是增函數(shù)B. 其圖象關(guān)于直線
對稱
C. 函數(shù)是偶函數(shù)D. 在區(qū)間
上的值域?yàn)?/span>
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①分類變量與
的隨機(jī)變量
越大,說明“
與
有關(guān)系”的可信度越大;
②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè)
,將其變換后得到線性方程
,則
,
的值分別是
和
;
③在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
④若變量和
滿足關(guān)系
,且變量
與
正相關(guān),則
與
也正相關(guān).
正確的個數(shù)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,過曲線外的一點(diǎn)
(其中
,
為銳角)作平行于
的直線
與曲線分別交于
.
(Ⅰ) 寫出曲線和直線
的普通方程(以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建系);
(Ⅱ)若成等比數(shù)列,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間爆發(fā)的新型冠狀病毒(COVID-19)是新中國成立以來感染人數(shù)最多的一次疫情.一個不知道自己已感染但處于潛伏期的甲從疫區(qū)回到某市過春節(jié),回到家鄉(xiāng)后與朋友乙、丙、丁相聚過,最終乙、丙、丁也感染了新冠病毒.可以肯定的是乙受甲感染的,丙是受甲或乙感染的,假設(shè)他受甲和受乙感染的概率分別是和
.丁是受甲、乙或丙感染的,假設(shè)他受甲、乙和丙感染的概率分別是
、
和
.在這種假設(shè)之下,乙、丙、丁中直接受甲感染的人數(shù)為
.
(1)求的分布列和數(shù)學(xué)期望;
(2)該市在發(fā)現(xiàn)在本地出現(xiàn)新冠病毒感染者后,迅速采取應(yīng)急措施,其中一項(xiàng)措施是各區(qū)必須每天及時,上報(bào)新增疑似病例人數(shù).區(qū)上報(bào)的連續(xù)
天新增疑似病例數(shù)據(jù)是“總體均值為
,中位數(shù)
”,
區(qū)上報(bào)的連續(xù)
天新增疑似病例數(shù)據(jù)是“總體均值為
,總體方差為
”.設(shè)
區(qū)和
區(qū)連續(xù)
天上報(bào)新增疑似病例人數(shù)分別為
和
,
和
分別表示
區(qū)和
區(qū)第
天上報(bào)新增疑似病例人數(shù)(
和
均為非負(fù)).記
,
.
①試比較和
的大��;
②求和
中較小的那個字母所對應(yīng)的
個數(shù)有多少組?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,
,
,
分別在線段
和
上,且
,
為
中點(diǎn),以
為折痕將
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置,且平面
平面
.
(1)求證:平面平面
;
(2)點(diǎn)為線段
的中點(diǎn),求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
.
(I)求的單調(diào)區(qū)間;
(Ⅱ)若R上有兩個不同的零點(diǎn)
,且
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在
,
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)若函數(shù)在
處的切線平行于
軸,是否存在整數(shù)
,使不等式
在
時恒成立?若存在,求出
的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+acosx.
(1)求函數(shù)f(x)的奇偶性.并證明當(dāng)|a|≤2時函數(shù)f(x)只有一個極值點(diǎn);
(2)當(dāng)a=π時,求f(x)的最小值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com