【題目】已知函數(shù)(為自然對數(shù)的底數(shù))在點的切線方程為.
(1)求實數(shù)的值;
(2)若關(guān)于的不等式對于任意恒成立,求整數(shù)的最大值.
【答案】(1);(2)
【解析】
(1)計算的導(dǎo)數(shù),根據(jù),也在切線上,列出方程組求解;
(2)構(gòu)造函數(shù),判斷的單調(diào)性,求出的最小值,而的值無法直接計算出來,所以根據(jù)零點存在定理,確定的范圍,再根據(jù),得到一個等式轉(zhuǎn)化的關(guān)系,從而確定的范圍,最后確定整數(shù)的最大值.
(1)令,則,
得:,,
由題得:
(2)根據(jù)題意,要證不等式對于任意恒成立,
即證時,的最小值大于,
令,
記,
當(dāng)時,;當(dāng)時,,
故即在上單調(diào)遞減,在上單調(diào)遞增,
又,,且,,
故存在唯一,使,
故當(dāng)時,;當(dāng)時,;
故在上單調(diào)遞減,在上單調(diào)遞增,
所以
一方面:
另一方面:由,即,
得
由得:,進而,
所以 ,又因為是整數(shù),所以,即.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸的建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程;
(2)若點與點分別為曲線動點,求的最小值,并求此時的點坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為橢圓的左、右焦點,為該橢圓的一條垂直于軸的動弦,直線與軸交于點,直線與直線的交點為.
(1)證明:點恒在橢圓上.
(2)設(shè)直線與橢圓只有一個公共點,直線與直線相交于點,在平面內(nèi)是否存在定點,使得恒成立?若存在,求出該點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,線段、都是圓的弦,且與垂直且相交于坐標原點,如圖所示,設(shè)△的面積為,設(shè)△的面積為.
(1)設(shè)點的橫坐標為,用表示;
(2)求證:為定值;
(3)用、、、表示出,試研究是否有最小值,如果有,求出最小值,并寫出此時直線的方程;若沒有最小值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地擬建造一座大型體育館,其設(shè)計方案側(cè)面的外輪廓如圖所示,曲線是以點為圓心的圓的一部分,其中;曲線是拋物線的一部分;,且恰好等于圓的半徑.假定擬建體育館的高(單位:米,下同).
(1)若,,求、的長度;
(2)若要求體育館側(cè)面的最大寬度不超過米,求的取值范圍;
(3)若,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的棱長均為6,其內(nèi)有個小球,球與三棱錐的四個面都相切,球與三棱錐的三個面和球都相切,如此類推,…,球與三棱錐的三個面和球都相切(,且),則球的體積等于__________,球的表面積等于__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,過對角線作平面交棱于點E,交棱于點F,則:
①四邊形一定是平行四邊形;
②四邊形有可能為正方形;
③四邊形在底面內(nèi)的投影一定是正方形;
④平面有可能垂直于平面.
其中所有正確結(jié)論的序號為( )
A.①②B.②③④C.①④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為3的正方體ABCDA1B1C1D1中,A1E=CF=1.
(1)求異面直線AC1與D1E所成角的余弦值;
(2)求直線AC1與平面BED1F所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖(1),函數(shù)的圖象與x軸圍成一個封閉區(qū)域A(陰影部分),將區(qū)域A(陰影部分)沿z軸的正方向上移6個單位,得到一幾何體.現(xiàn)有一個與之等高的底面為橢圓的柱體如圖(2)所示,其底面積與區(qū)域A(陰影部分)的面積相等,則此柱體的體積為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com