13.如圖,已知$\overrightarrow{OA}=\overrightarrow a,\overrightarrow{OB}=\overrightarrow b$,任意點M關(guān)于點A的對稱點為S,點S關(guān)于點B的對稱點為N,則$\overrightarrow{MN}$=(  )
A.$\overrightarrow a+\overrightarrow b$B.$2\overrightarrow a+3\overrightarrow b$C.$3\overrightarrow a-2\overrightarrow b$D.$2\overrightarrow b-2\overrightarrow a$

分析 由已知得AB是△MSN的中位線,從而$\overrightarrow{MN}$=2$\overrightarrow{AB}$,由此能求出結(jié)果.

解答 解:∵$\overrightarrow{OA}=\overrightarrow a,\overrightarrow{OB}=\overrightarrow b$,任意點M關(guān)于點A的對稱點為S,點S關(guān)于點B的對稱點為N,
∴AB是△MSN的中位線,
∴$\overrightarrow{MN}$=2$\overrightarrow{AB}$=2($\overrightarrow{OB}-\overrightarrow{OA}$)=2$\overrightarrow-2\overrightarrow{a}$.
故選:D.

點評 本題考查向量的求法,是基礎(chǔ)題,解題時要認真審題,注意數(shù)形結(jié)合思想的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知a=log23,b=log${\;}_{\frac{1}{2}}$3,c=3${\;}^{-\frac{1}{2}}$,則a,b,c的大小關(guān)系(從大到小排列)是a>c>b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.現(xiàn)有l(wèi),2,3,4,5,6,7,8,9九個自然數(shù)
(1)從中一次性抽取3個數(shù),求這3個數(shù)之和是偶數(shù)的概率;
(2)做如下游戲:從中隨機抽取一個數(shù),若能被3整除則游戲停止;若不能被3整除,則放回后再隨機抽取一個數(shù),游戲繼續(xù),至多抽取5次,若5次抽取的數(shù)都不能被3整除,游戲也停止.設(shè)抽取的次數(shù)為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)m,n為兩條不同的直線,α,β,γ為三個不同的平面,則下列命題中為假命題的是( 。
A.若m⊥α,n⊥α,則m∥nB.若α∥β,β⊥γ,則α⊥γC.若m∥n,m⊥α,則n⊥αD.若α⊥γ,β⊥γ,則α∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知m∈R,若$\frac{1+mi}{1+i}$為實數(shù),則m的值為(  )
A.-1B.$-\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.數(shù)列{an}中,${a_1}=\frac{1}{2}$,${a_{n+1}}=\frac{{n{a_n}}}{{(n+1)(n{a_n}+2)}}(n∈{N^*})$,則數(shù)列{an}的通項公式an=$\frac{1}{{n(3•{2^{n-1}}-1)}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知直線2x-y+4=0與拋物線x2=4y相交于A,B兩點,O是坐標原點,P是拋物線弧AOB上的一點,則△ABP面積的最大值是20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.某中學為了了解學生的課外閱讀情況,隨機調(diào)查了50名學生,得到他們在某一天各自課外閱讀所用時間的數(shù)據(jù),結(jié)果用圖的條形圖表示.根據(jù)條形圖可得這50名學生這一天平均每人的課外閱讀時間為0.97小時.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.經(jīng)過點P(0,-1)作直線l,若直線l與連接A(1,-2),B(2,1)的線段總有公共點,則斜率k的取值范圍為(  )
A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

同步練習冊答案