分析 由題意可知;(n+1)an+1=$\frac{n}{n{a}_{n}+2}$,設(shè)nan=bn,bn+1=$\frac{_{n}}{_{n}+2}$,構(gòu)造等比數(shù)列,$\frac{1}{_{n+1}}$+1=$\frac{2}{_{n}}$+2=2($\frac{1}{_{n}}$+1),$\frac{1}{_{1}}$+1=$\frac{1}{1×{a}_{1}}$+1=3,數(shù)列{$\frac{1}{_{n}}$+1}是以3為首項(xiàng),以2為公比的等比數(shù)列,由等比數(shù)列通項(xiàng)公式求得nan=bn=$\frac{1}{3•{2}^{n-1}-1}$,即可求得數(shù)列{an}的通項(xiàng)公式an.
解答 解:由題意可知:(n+1)an+1=$\frac{na_n}{n{a}_{n}+2}$,
設(shè)nan=bn,
∴bn+1=$\frac{_{n}}{_{n}+2}$,
∴$\frac{1}{_{n+1}}$=$\frac{2}{_{n}}$+1,
,∴$\frac{1}{_{n+1}}$+1=$\frac{2}{_{n}}$+2=2($\frac{1}{_{n}}$+1),
$\frac{1}{_{1}}$+1=$\frac{1}{1×{a}_{1}}$+1=3
∴數(shù)列{$\frac{1}{_{n}}$+1}是以3為首項(xiàng),以2為公比的等比數(shù)列,
$\frac{1}{_{n}}$+1=3•2n-1,
∴$\frac{1}{_{n}}$=3•2n-1-1,
∴nan=bn=$\frac{1}{3•{2}^{n-1}-1}$,
∴an=$\frac{1}{{n(3•{2^{n-1}}-1)}}$,
故答案為:$\frac{1}{{n(3•{2^{n-1}}-1)}}$.
點(diǎn)評(píng) 本題考查數(shù)列的遞推公式,考查構(gòu)造等比數(shù)列的方法,等比數(shù)列通項(xiàng)公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p:存在x∈R,x2+2x+2≤0;非p:當(dāng)x2+2x+2>0時(shí),x∈R | |
B. | p:每一個(gè)四邊形的四個(gè)頂點(diǎn)共圓;非p:存在一個(gè)四邊形的四個(gè)頂點(diǎn)不共圓 | |
C. | p:有的三角形為正三角形;非p:所有的三角形都不是正三角形 | |
D. | p:能被3整除的整數(shù)是奇數(shù);非p:存在一個(gè)能被3整除的整數(shù)不是奇數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow a+\overrightarrow b$ | B. | $2\overrightarrow a+3\overrightarrow b$ | C. | $3\overrightarrow a-2\overrightarrow b$ | D. | $2\overrightarrow b-2\overrightarrow a$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{π}{6}$,0) | B. | (-$\frac{π}{12}$,$\frac{π}{6}$) | C. | (0,$\frac{π}{6}$) | D. | ($\frac{π}{6}$,$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com