【題目】已知函數(shù)在處有極大值,則的值為( )
A. B. C. 或 D. 或
【答案】B
【解析】
先求函數(shù)的導(dǎo)函數(shù),由題意可得f(1)=10,且f′(1)=0,解a,b的方程,再根據(jù)極大值的概念,檢驗a,b的值,進而求得 的值.
函數(shù)f(x)=x3+ax2+bx-a2-7a的導(dǎo)函數(shù)為f′(x)=3x2+2ax+b,
由在x=1處取得極大值10,可得即
解得a=-2,b=1或a=-6,b=9.
當(dāng)a=-2,b=1時,f′(x)=3x2-4x+1=(x-1)(3x-1),
當(dāng)<x<1時,f′(x)<0,f(x)單調(diào)遞減;
當(dāng)x>1時,f′(x)>0,f(x)單調(diào)遞增;
可知f(x)在x=1處取得極小值10;
當(dāng)a=-6,b=9時,f′(x)=3x2-12x+9=(x-1)(3x-9),
當(dāng)x<1時,f′(x)>0,f(x)單調(diào)遞增;
當(dāng)3>x>1時,f′(x)>0,f(x)單調(diào)遞減;
可知f(x)在x=1處取得極大值10.
綜上可得,a=-6,b=9滿足題意.
則 .故選:B
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2,M是棱PB上一點.
(Ⅰ)若BM=2MP,求證:PD∥平面MAC;
(Ⅱ)若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求證:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的條件下,若二面角B﹣AC﹣M的余弦值為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個命題:
①若ab≤0,則a≤0或b≤0;②若a>b,則am2>bm2;③在△ABC中,若sinA=sinB,則A=B;④在一元二次方程ax2+bx+c=0中,若b2-4ac<0,則方程有實數(shù)根.其中原命題、逆命題、否命題、逆否命題全都是真命題的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線 E: .
(I)求曲線 E的離心率及標(biāo)準(zhǔn)方程;
(II)設(shè) M(x0 , y0)是曲線 E上的任意一點,過原點作⊙M:(x﹣x0)2+(y﹣y0)2=8的兩條切線,分別交曲線 E于點 P、Q.
①若直線OP,OQ的斜率存在分別為k1 , k2 , 求證:k1k2=﹣ ;
②試問OP2+OQ2是否為定值.若是求出這個定值,若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點處的切線方程為.
(1)求,的值;
(2)若,求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù),且在區(qū)間內(nèi)為減函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m、n∈R+ , f(x)=|x+m|+|2x﹣n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+ )的最小值為8.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生的課外體育鍛煉平均每天運動的時間進行調(diào)查,如下表:(平均每天鍛煉的時間單位:分鐘)
將學(xué)生日均課外體育運動時間在上的學(xué)生評價為“課外體育達標(biāo)”.
平均每天鍛煉的時間(分鐘) | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過的前提下認為“課外體育達標(biāo)”與性別有關(guān)?
課外體育不達標(biāo) | 課外體育達標(biāo) | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
(2)從上述200名學(xué)生中,按“課外體育達標(biāo)”、“課外體育不達標(biāo)”分層抽樣,抽取4人得到一個樣本,再從這個樣本中抽取2人,求恰好抽到一名“課外體育不達標(biāo)”學(xué)生的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(e=2.71828…),g(x)為其反函數(shù).
(1)求函數(shù)F(x)=g(x)﹣ax的單調(diào)區(qū)間;
(2)設(shè)直線l與f(x),g(x)均相切,切點分別為(x1 , f(x1)),(x2 , f(x2)),且x1>x2>0,求證:x1>1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com