已知點(diǎn), 是一個(gè)動(dòng)點(diǎn), 且直線的斜率之積為.
(1) 求動(dòng)點(diǎn)的軌跡的方程;
(2) 設(shè), 過點(diǎn)的直線、兩點(diǎn), 若對(duì)滿足條件的任意直線, 不等式恒成立, 求的最小值.
(1) (2)

試題分析:(1)設(shè)動(dòng)點(diǎn)的坐標(biāo)為, 則直線的斜率分別是,
由條件得,      2分
, 動(dòng)點(diǎn)的軌跡的方程為      6分
(2)設(shè)點(diǎn)的坐標(biāo)分別是,
ⅰ)當(dāng)直線垂直于軸時(shí),
    8分
ⅱ)當(dāng)直線不垂直于軸時(shí), 設(shè)直線的方程為,



,

=  綜上所述的最大值是   13分
點(diǎn)評(píng):求動(dòng)點(diǎn)的軌跡方程的主要步驟:建立直角坐標(biāo)系,設(shè)所求點(diǎn)為,找到關(guān)于所求點(diǎn)的關(guān)系式用坐標(biāo)表示,化簡(jiǎn)整理出方程并去掉不滿足題意要求的點(diǎn);有關(guān)于直線與橢圓相交的問題常聯(lián)立方程,利用韋達(dá)定理設(shè)而不求的方法轉(zhuǎn)化,本題中要注意討論直線斜率存在與不存在兩種情況
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則雙曲線的離心率為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓,則以點(diǎn)為中點(diǎn)的弦所在直線方程為__________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為中心,為兩個(gè)焦點(diǎn)的橢圓上存在一點(diǎn),滿足,則該橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

坐標(biāo)系與參數(shù)方程在直角坐標(biāo)系中,直線的參數(shù)方程為(t 為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為。
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線交于點(diǎn)A,B,若點(diǎn)P的坐標(biāo)為(2,),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在橢圓C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.        
(1)求橢圓C的方程;(6分)
(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點(diǎn),且A、B關(guān)于點(diǎn)M對(duì)稱,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程表示雙曲線,則實(shí)數(shù)k的取值范圍是  (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為,曲線的極坐標(biāo)方程為
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)判斷曲線與曲線的交點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)設(shè)橢圓與雙曲線有相同的焦點(diǎn)是橢圓與雙曲線的公共點(diǎn),且的周長為,求橢圓的方程;
我們把具有公共焦點(diǎn)、公共對(duì)稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓”的方程為.設(shè)“盾圓”上的任意一點(diǎn)的距離為到直線的距離為,求證:為定值;
 
(3)由拋物線弧)與第(1)小題橢圓弧)所合成的封閉曲線為“盾圓”.設(shè)過點(diǎn)的直線與“盾圓”交于兩點(diǎn),,),試用表示;并求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案