【題目】如圖,在平面直角坐標(biāo)系中, 是橢圓 的右頂點(diǎn), 是上頂點(diǎn), 是橢圓位于第三象限上的任一點(diǎn),連接 分別交坐標(biāo)軸于, 兩點(diǎn).

(1)若點(diǎn)為左焦點(diǎn)且直線(xiàn)平分線(xiàn)段,求橢圓的離心率;

(2)求證:四邊形的面積是定值.

【答案】(1) (2)見(jiàn)解析

【解析】試題分析:(1)根據(jù)題意得可解出C點(diǎn)坐標(biāo),再得到 ,根據(jù)三點(diǎn)共線(xiàn)可得到離心率;(2四邊形的面積,根據(jù)點(diǎn)點(diǎn)距可求線(xiàn)段長(zhǎng)度,即可求得面積表達(dá)式,進(jìn)而求得定值。

解析:

(1)設(shè)橢圓焦距為,則, ,直線(xiàn)的方程為,

聯(lián)立方程組 ,即

所以,

中點(diǎn) ,因平分線(xiàn)段,所以 , 三點(diǎn)共線(xiàn),

,所以,則 ,

所以

(2)設(shè),則直線(xiàn)的方程為,所以;

直線(xiàn)的方程為,所以;

所以, ,

因?yàn)?/span>,

則四邊形的面積

,

所以四邊形的面積是定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求的值;

(2)若函數(shù)正數(shù)零點(diǎn),求滿(mǎn)足條件的實(shí)數(shù)a的取值范圍;

(3)若對(duì)于任意的時(shí),不等式恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是實(shí)數(shù),已知奇函數(shù),

(1)求的值;

(2)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】斜率為1,過(guò)拋物線(xiàn)的焦點(diǎn)的直線(xiàn)被拋物線(xiàn)所截得的弦長(zhǎng)為

A. 8 B. 6 C. 4 D. 10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, , 底面.

1)證明:平面平面;

2)若二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)若函數(shù)的圖象與直線(xiàn)相切,求的值;

(2)求在區(qū)間上的最小值;

(3)若函數(shù)有兩個(gè)不同的零點(diǎn), ,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)的圖象恒過(guò)(0,0)(1,1)兩點(diǎn),則稱(chēng)函數(shù)“0-1函數(shù)”.

(1)判斷下面兩個(gè)函數(shù)是否是“0-1函數(shù),并簡(jiǎn)要說(shuō)明理由:

; .

(2)若函數(shù)“0-1函數(shù),求;

(3)設(shè) ,定義在R上的函數(shù)滿(mǎn)足:① 對(duì) , R,均有; “0-1函數(shù),求函數(shù)的解析式及實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是邊長(zhǎng)為2的菱形, , , , 的中點(diǎn).

(1)證明:

(2)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

)求的單調(diào)增區(qū)間.

)求的最大值,及此時(shí)的取值.

)若的一個(gè)零點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案