把三階行列式
.
374
x+a52
10x
.
中元素7的代數(shù)余子式記為f(x),若關(guān)于x的不等式f(x)>0的解集為(-1,b),則實(shí)數(shù)a+b=
 
分析:先表示出函數(shù)f(x)的關(guān)系式,再由f(x)>0的解集為(-1,b)確定a、b的值.
解答:解:由題意知
f(x)=(-1)3
.
x+a2
1x
.
=-[x(x+a)-2]=-x2-ax+2
∵f(x)>0的解集為(-1,b)
∴f(-1)=0   解得a=-1代入函數(shù)f(x)中
∴f(x)=-x2+x+2>0   故b=2   a+b=1
故答案為:1.
點(diǎn)評(píng):本題主要考查行列式的表示和一元二次不等式的解法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:
lim
n→∞
c=0
,其中c為常數(shù),命題Q:把三階行列式
.
 52
 x-c6
 18
.
中第一行、第二列元素的代數(shù)余子式記為f(x),且函數(shù)f(x)在(-∞ , 
1
4
]
上單調(diào)遞增.若命題P是真命題,而命題Q是假命題,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浦東新區(qū)二模)把三階行列式|  
2x03
x40
1x-3-1
 |
中第1行第3列元素的代數(shù)余子式記為f(x),則關(guān)于x的不等式f(x)<0的解集為
(-1,4)
(-1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐匯區(qū)一模)設(shè)a∈R,把三階行列式
.
23     5
1
4
x+a
4     0
21     x
.
中第一行第二列元素的余子式記為f(x),且關(guān)于x的不等式f(x)<0的解集為
(-2,0).各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)列(an,Sn)(n∈N*)在函數(shù)y=f(x)的圖象上.
(1)求函數(shù)y=f(x)的解析式;
(2)若bn=k
an
2
(k>0),求
lim
n→∞
2bn-1
bn+2
的值;
(3)令cn=
an,n為奇數(shù)
c
n
2
,n為偶數(shù)
,求數(shù)列{cn}的前2012項(xiàng)中滿足cm=6的所有項(xiàng)數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐匯區(qū)一模)設(shè)a∈R,把三階行列式
.
23    5
1
4
x+a
4    0
21    x
.
中第一行第二列元素的余子式記為f(x),且關(guān)于x的不等式f(x)<0的解集為(-2,0).各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)列(an,Sn)(n∈N*)在函數(shù)y=f(x)的圖象上.
(1)求函數(shù)y=f(x)的解析式;
(2)若bn=2an,求
lim
n→∞
2bn-1
bn+2
的值;
(3)令cn=
an,n為奇數(shù)
c
n
2
,n為偶數(shù)
,求數(shù)列{cn}的前20項(xiàng)之和.

查看答案和解析>>

同步練習(xí)冊(cè)答案