已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的對(duì)稱中心為M(x0,f(x0)),記函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f′(x)的導(dǎo)函數(shù)為f″(x),則有f″(x0)=0.若函數(shù)f(x)=x3-3x2,則
①f(x)的對(duì)稱中心是
 

②:f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=
 
分析:由題意對(duì)已知函數(shù)求兩次導(dǎo)數(shù)可得圖象關(guān)于點(diǎn)(1,-2)對(duì)稱,即f(x)+f(2-x)=-4,而要求的式子可用倒序相加法求解,共有2011對(duì)-4和一個(gè)f(1)=-2,可得答案.
解答:解:①由題意f(x)=x3-3x2,
則f′(x)=3x2-6x,
f″(x)=6x-6,
由f″(x0)=0得6x0-6=1
解得x0=1,而f(1)=-2,
故函數(shù)f(x)=x3-3x2關(guān)于點(diǎn)(1,-2)對(duì)稱,
②∵函數(shù)f(x)=x3-3x2關(guān)于點(diǎn)(1,-2)對(duì)稱,
∴f(x)+f(2-x)=-4,
f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=-4×2011+(-2)=-8046.
故答案為:①(1,-2),②-8046
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的基本運(yùn)算,利用條件求出函數(shù)的對(duì)稱中心是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案