【題目】已知一列非零向量滿足:(其中是非零常數(shù)).

(1)求數(shù)列的通項公式;

(2)求向量夾角的弧度數(shù)

(3)當(dāng),中所有與共線的向量按原來的順序排成一列,記為為坐標(biāo)原點,求點列的極限點D的坐標(biāo).(:若點坐標(biāo)為則稱點D為點列的極限點).

【答案】(1) (2) 當(dāng)時,;當(dāng)時,; (3) .

【解析】

(1)根據(jù)向量模長公式可得數(shù)列的遞推關(guān)系式,結(jié)合等比數(shù)列的定義可求

(2)先求解,結(jié)合向量的夾角公式可得夾角;

(3)先根據(jù)題意求解數(shù)列的通項公式,從而可得,結(jié)合極限知識可求解極限點D的坐標(biāo).

(1)因為,

所以

.

所以,即為等比數(shù)列.

因為,所以,所以.

(2) ,

所以;

當(dāng)時,;當(dāng)時,.

(3)(2)時,,所以每隔3個向量的兩個向量必共線,且方向相反,

所以與共線的向量為

設(shè)的單位向量為,則,

所以,

所以

同理可求,故點列的極限點D的坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, , 的中點, 的中點,且為正三角形.

(1)求證: 平面;

(2)若三棱錐的體積為1,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.直線的極坐標(biāo)方程為

(1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

(2)已知直線與曲線交于兩點,與軸交于點,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的頂點在原點,對稱軸是y軸,直線與拋物線交于不同的兩點、,線段中點的縱坐標(biāo)為2,且.

1)求拋物線的標(biāo)準(zhǔn)方程;

2)設(shè)拋物線的焦點為,若直線經(jīng)過焦點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)滿足的虛部為2,

1)求復(fù)數(shù)

2)設(shè)在復(fù)平面上對應(yīng)點分別為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線=1(a>0,b>0)的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于A,B兩點,F1為左焦點.

(1)求雙曲線的方程;

(2)若△F1AB的面積等于6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點和非零實數(shù),若兩條不同的直線、均過點,且斜率之積為,則稱直線是一組共軛線對,如直線是一組共軛線對,其中是坐標(biāo)原點.

1)已知、是一組共軛線對,且知直線,求直線的方程;

2)如圖,已知點、點和點分別是三條傾斜角為銳角的直線、、上的點(、、、均不重合),且直線、共軛線對,直線、共軛線對,直線、共軛線對,求點的坐標(biāo);

3)已知點,直線、共軛線對,當(dāng)的斜率變化時,求原點到直線的距離之積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).其中

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若對于任意,都有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面,垂直于,為棱上的點,.

1)若為棱的中點,求證:平面;

2)當(dāng)時,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案