【題目】已知點(diǎn)是橢圓的右焦點(diǎn),過點(diǎn)的直線交橢圓于兩點(diǎn),當(dāng)直線的下頂點(diǎn)時(shí),的斜率為,當(dāng)直線垂直于的長(zhǎng)軸時(shí),的面積為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)當(dāng)時(shí),求直線的方程;

(Ⅲ)若直線上存在點(diǎn)滿足成等比數(shù)列,且點(diǎn)在橢圓外,證明:點(diǎn)在定直線上.

【答案】(Ⅰ);(Ⅱ);(Ⅲ)詳見解析.

【解析】

(Ⅰ)根據(jù)題意得:,,及,解得,進(jìn)而可得橢圓的方程;

(Ⅱ)分兩種情況:當(dāng)直線軸重合時(shí),得,不合題意;當(dāng)直線軸不重合時(shí),設(shè)直線的方程為,聯(lián)立直線與橢圓得方程,結(jié)合根與系數(shù)關(guān)系得,由,得,組成方程組解得,進(jìn)而可得直線的方程;

(Ⅲ)設(shè),分兩種情況討論,當(dāng)直線軸重合時(shí),當(dāng)直線軸不重合時(shí),由,解得,所以點(diǎn)在定直線上.

解:(Ⅰ)由題設(shè):,

解得:,

所以橢圓的方程為:

(Ⅱ)當(dāng)直線軸重合時(shí),可得,不合題意;

當(dāng)直線軸不重合時(shí),設(shè)直線的方程為:

設(shè),聯(lián)立,

消去整理得:,

①,②,

,得③,

聯(lián)立①②③得

解得:,

所以直線的方程為:

(Ⅲ)設(shè),

當(dāng)直線軸重合時(shí),因?yàn)辄c(diǎn)在橢圓外,所以同號(hào),

,

,解得:,

當(dāng)直線軸不重合時(shí),

由(Ⅱ)知,,

因?yàn)?/span>,,,

因?yàn)辄c(diǎn)在橢圓外,所以同號(hào),

,

整理得:,

,

解得:,

代入直線方程,得:,

所以點(diǎn)在定直線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求曲線的直角坐標(biāo)方程及直線的普通方程;

2)設(shè)直線與曲線交于,兩點(diǎn)(點(diǎn)在點(diǎn)左邊)與直線交于點(diǎn).求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正四棱錐的底面邊長(zhǎng)為,、分別為的中點(diǎn).

1)當(dāng)時(shí),證明:平面平面

2)若平面與底面所成銳二面角為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,,平面平面,.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)就業(yè)部從該大學(xué)2018年畢業(yè)且已就業(yè)的大學(xué)本科生中隨機(jī)抽取了100人進(jìn)行了問卷調(diào)查,其中有一項(xiàng)是他們的薪酬,經(jīng)調(diào)查統(tǒng)計(jì),他們的月薪在3000元到10000元之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到如下頻率分布直方圖:

若月薪在區(qū)間的左側(cè),則認(rèn)為該大學(xué)本科生屬“就業(yè)不理想”的學(xué)生,學(xué)校將與本人聯(lián)系,為其提供更好的指導(dǎo)意見.其中,分別是樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

1)現(xiàn)該校2018屆本科畢業(yè)生張靜的月薪為3600元,判斷張靜是否屬于“就業(yè)不理想”的學(xué)生?用樣本估計(jì)總體,從該校2018屆本科畢業(yè)生隨機(jī)選取一人,屬于“就業(yè)不理想”的概率?

2)為感謝同學(xué)們對(duì)調(diào)查的支持配合,該校利用分層抽樣的方法從樣本的前3組中抽出6人,每人贈(zèng)送一份禮品,并從這6人中再抽取2人,每人贈(zèng)送新款某手機(jī)1部,求獲贈(zèng)手機(jī)的2人中恰有1人月薪不超過5000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線l的參數(shù)方程為t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4sinθ+).

(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;

(2)若直線l與曲線C交于MN兩點(diǎn),求△MON的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,已知直線l的參數(shù)方程為t為參數(shù)),圓C的極坐標(biāo)方程是.

1)求直線l與圓C的公共點(diǎn)個(gè)數(shù);

2)在平面直角坐標(biāo)系中,圓C經(jīng)過伸縮變換得到曲線,設(shè)為曲線上一點(diǎn),求的最大值,并求相應(yīng)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自從新型冠狀病毒爆發(fā)以來(lái),全國(guó)范圍內(nèi)采取了積極的措施進(jìn)行防控,并及時(shí)通報(bào)各項(xiàng)數(shù)據(jù)以便公眾了解情況,做好防護(hù).以下是湖南省2020123-31日這9天的新增確診人數(shù).

日期

23

24

25

26

27

28

29

30

31

時(shí)間

1

2

3

4

5

6

7

8

9

新增確診人數(shù)

15

19

26

31

43

78

56

55

57

經(jīng)過醫(yī)學(xué)研究,發(fā)現(xiàn)新型冠狀病毒極易傳染,一個(gè)病毒的攜帶者在病情發(fā)作之前通常有長(zhǎng)達(dá)14天的潛伏期,這個(gè)期間如果不采取防護(hù)措施,則感染者與一位健康者接觸時(shí)間超過15秒,就有可能傳染病毒.

1)將123日作為第1天,連續(xù)9天的時(shí)間作為變量x,每天新增確診人數(shù)作為變量y,通過回歸分析,得到模型用于對(duì)疫情進(jìn)行分析.對(duì)上表的數(shù)據(jù)作初步處理,得到下面的一些統(tǒng)計(jì)量的值(部分?jǐn)?shù)據(jù)已作近似處理):.根據(jù)相關(guān)數(shù)據(jù),求該模型的回歸方程(結(jié)果精確到0.1),并依據(jù)該模型預(yù)測(cè)第10天新增確診人數(shù).

2)如果一位新型冠狀病毒的感染者傳染給他人的概率為0.3,在一次12人的家庭聚餐中,只有一位感染者參加了聚餐,記余下的人員中被感染的人數(shù)為,求最有可能(即概率最大)的值是多少.

附:對(duì)于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計(jì)分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為,且乙投球2次均未命中的概率為.

)求乙投球的命中率

)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案