【題目】某服裝公司,為確定明年類服裝的廣告費(fèi)用,對往年廣告費(fèi)(單位:千元)對年銷售量(單位:件)和年利潤(單位:千元)的影響.對2011-2018廣告費(fèi)和年銷售量數(shù)據(jù)進(jìn)行了處理,分析出以下散點(diǎn)圖和統(tǒng)計量:
45 | 580 | 2025 | 297 | 1600 | 960 | 1440 |
表中
(1)由散點(diǎn)圖可知,和更適合作為年銷售量關(guān)于年廣告費(fèi)的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果和表中數(shù)據(jù)求關(guān)于的回歸方程.
(3)已知該類服裝年利率與的關(guān)系為.由(2)回答以下問題:年廣告費(fèi)用等于60時,年銷售量及年利潤的預(yù)報值為多少?年廣告費(fèi)用為何值時,年利率的預(yù)報值最。
對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為:
【答案】(1)(2)(3),;2.77千元
【解析】
(1)根據(jù)散點(diǎn)圖可判斷哪個更優(yōu);
(2)先建立y關(guān)于w的線性回歸方程,再求y關(guān)于x的回歸方程;
(3)由(2)計算x=60時年銷售量y的預(yù)報值和年利潤z的預(yù)報值,根據(jù)(2) 的結(jié)果,利用二次函數(shù)的圖象與性質(zhì)即可得出x為何值時z取得最大值.
(1) 根據(jù)散點(diǎn)圖即可得出判斷, 更適合作為年銷售量關(guān)于年廣告費(fèi)的回歸方程.
(2)令,先建立y關(guān)于w的線性回歸方程,
,
,
所以y關(guān)于w的線性回歸方程為,
因此y關(guān)于x的回歸方程為.
(3)當(dāng)時,年銷售量y的預(yù)報值為
(件),
年利潤z的預(yù)報值為
(千元);
根據(jù)(2)的結(jié)果可知,年利潤z的預(yù)報值
,
當(dāng)千元時,年利率的預(yù)報值最小.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小趙和小王約定在早上7:00至7:15之間到某公交站搭乘公交車去上學(xué),已知在這段時間內(nèi),共有2班公交車到達(dá)該站,到站的時間分別為7:05,7:15,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學(xué)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有6本不同的書,在下列不同的條件下,各有多少種不同的分法?
(1)分給甲乙丙三人,其中一個人1本,一個人2本,一個人3本;
(2)分成三組,一組4本,另外兩組各1本;
(3)甲得1本,乙得1本,丙得4本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某國建了一座時間機(jī)器,形似一條圓形地鐵軌道,其上均勻設(shè)置了2014個站臺(編號依次為l,2,…,2014)分別對應(yīng)一個年份,起始站及終點(diǎn)站均為第1站(對應(yīng)2014年).為節(jié)約成本,機(jī)器每次運(yùn)行一圈,只在其中一半的站臺?,出于技術(shù)原因,每次至多行駛?cè)颈仨毻?恳淮,且所?康娜蝺蓚站臺不能是圓形軌道的對徑點(diǎn).試求不同的停靠方式的種數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若,函數(shù)在處取得極小值,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題,其中正確命題有( )
A.空間任意三個不共面的向量都可以作為一個基底
B.已知向量,則與任何向量都不能構(gòu)成空間的一個基底
C.是空間四點(diǎn),若不能構(gòu)成空間的一個基底,那么共面
D.已知向量組是空間的一個基底,若,則也是空間的一個基底
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與定點(diǎn),動圓過點(diǎn)且與圓相切.
(1)求動圓圓心的軌跡的方程;
(2)若過定點(diǎn)的直線交軌跡于不同的兩點(diǎn)、,求弦長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為坐標(biāo)原點(diǎn),動點(diǎn)在橢圓:上,該橢圓的左頂點(diǎn)到直線的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓外一點(diǎn)滿足,平行于軸,,動點(diǎn)在直線上,滿足.設(shè)過點(diǎn)且垂直的直線,試問直線是否過定點(diǎn)?若過定點(diǎn),請寫出該定點(diǎn),若不過定點(diǎn)請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的內(nèi)切圓分別與邊BC、CA、AB切于點(diǎn)D、E、F,AD與BE交于點(diǎn)P,設(shè)點(diǎn)P關(guān)于直線EF、FD、DE的對稱點(diǎn)分別X、Y、Z.證明:AX、BY、CZ三線共點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com