【題目】已知是橢圓的左、右焦點,橢圓過點.

(1)求橢圓的方程;

(2)過點的直線(不過坐標(biāo)原點)與橢圓交于,兩點,且點軸上方,軸下方,,求直線的斜率.

【答案】(1)(2)

【解析】

(1) 由條件知從而解得,即可得到橢圓的方程;

(2)設(shè),,則,設(shè)直線的方程為,代入橢圓的方程消去,得由韋達(dá)定理及可建立關(guān)于未知量的方程,解之即可.

(1)由條件知解得

因此橢圓的方程為.

(2)解法一設(shè),,則,

設(shè)直線的方程為,

代入橢圓的方程消去,得,

由韋達(dá)定理得,

,

帶入上式得

所以,解得,

結(jié)合圖形知,故直線的斜率為.

解法二設(shè),則,

設(shè)直線的方程為,

代入橢圓的方程消去,得,

因此,

,

代入上式得

解得,

結(jié)合圖形知故直線的斜率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線,直線的斜率為2.

(Ⅰ)若相切,求直線的方程;

(Ⅱ)若相交于,,線段的中垂線交,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次數(shù)學(xué)競賽,共有6道選擇題,規(guī)定每道題答對得5分,不答得1分,答錯倒扣1分.一個由若干名學(xué)生組成的學(xué)習(xí)小組參加了這次競賽,這個小組的人數(shù)與總得分情況為(  )

A. 當(dāng)小組的總得分為偶數(shù)時,則小組人數(shù)一定為奇數(shù)

B. 當(dāng)小組的總得分為奇數(shù)時,則小組人數(shù)一定為偶數(shù)

C. 小組的總得分一定為偶數(shù),與小組人數(shù)無關(guān)

D. 小組的總得分一定為奇數(shù),與小組人數(shù)無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,經(jīng)過點B(0,1).設(shè)橢圓G的右頂點為A,過原點O的直線l與橢圓G交于P,Q兩點(點Q在第一象限),且與線段AB交于點M.

(Ⅰ)求橢圓G的標(biāo)準(zhǔn)方程;

(Ⅱ)是否存在直線l,使得△BOP的面積是△BMQ的面積的3倍?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動點,且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點的三個面上的正投影的面積之和( 。

A. 有最小值B. 有最大值C. 為定值3D. 為定值2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若對任意恒成立,求實數(shù)的取值范圍.

2)設(shè)函數(shù)在區(qū)間上有兩個極值點

i)求實數(shù)的取值范圍;

(ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐PABCPA⊥平面ABC,D是棱PB的中點已知PA=BC=2,AB=4,CBAB則異面直線PC,AD所成角的余弦值為

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會必須打好的三大攻堅戰(zhàn)之一,為堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村扶貧. 此幫扶單位為了了解某地區(qū)貧困戶對其所提供的幫扶的滿意度,隨機(jī)調(diào)查了40個貧困戶,得到貧困戶的滿意度評分如下:

貧困戶編號

評分

貧困戶編號

評分

貧困戶編號

評分

貧困戶編號

評分

1

2

3

4

5

6

7

8

9

10

78

73

81

92

95

85

79

84

63

86

11

12

13

14

15

16

17

18

19

20

88

86

95

76

97

78

88

82

76

89

21

22

23

24

25

26

27

28

29

30

79

83

72

74

91

66

80

83

74

82

31

32

33

34

35

36

37

38

39

40

93

78

75

81

84

77

81

76

85

89

用系統(tǒng)抽樣法從40名貧困戶中抽取容量為10的樣本,且在第一分段里隨機(jī)抽到的評分?jǐn)?shù)據(jù)為92.

(1)請你列出抽到的10個樣本的評分?jǐn)?shù)據(jù);

(2)計算所抽到的10個樣本的均值和方差;

(3)在(2)條件下,若貧困戶的滿意度評分在之間,則滿意度等級為“級”.運用樣本估計總體的思想,現(xiàn)從(1)中抽到的10個樣本的滿意度為“級”貧困戶中隨機(jī)地抽取2戶,求所抽到2戶的滿意度均評分均“超過80”的概率.

(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案