【題目】已知,是橢圓的左、右焦點,橢圓過點.
(1)求橢圓的方程;
(2)過點的直線(不過坐標(biāo)原點)與橢圓交于,兩點,且點在軸上方,點在軸下方,若,求直線的斜率.
【答案】(1)(2)
【解析】
(1) 由條件知從而解得,即可得到橢圓的方程;
(2)設(shè),,則,,設(shè)直線的方程為,代入橢圓的方程消去,得,由韋達(dá)定理及可建立關(guān)于未知量的方程,解之即可.
(1)由條件知解得
因此橢圓的方程為.
(2)解法一:設(shè),,則,,
設(shè)直線的方程為,
代入橢圓的方程消去,得,
由韋達(dá)定理得,,
由知,即,
帶入上式得,
所以,解得,
結(jié)合圖形知,故直線的斜率為.
解法二:設(shè),,則,,
設(shè)直線的方程為,
代入橢圓的方程消去,得,
因此,,
由知,
代入上式得 ,
解得,
結(jié)合圖形知,故直線的斜率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令.求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)競賽,共有6道選擇題,規(guī)定每道題答對得5分,不答得1分,答錯倒扣1分.一個由若干名學(xué)生組成的學(xué)習(xí)小組參加了這次競賽,這個小組的人數(shù)與總得分情況為( )
A. 當(dāng)小組的總得分為偶數(shù)時,則小組人數(shù)一定為奇數(shù)
B. 當(dāng)小組的總得分為奇數(shù)時,則小組人數(shù)一定為偶數(shù)
C. 小組的總得分一定為偶數(shù),與小組人數(shù)無關(guān)
D. 小組的總得分一定為奇數(shù),與小組人數(shù)無關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,經(jīng)過點B(0,1).設(shè)橢圓G的右頂點為A,過原點O的直線l與橢圓G交于P,Q兩點(點Q在第一象限),且與線段AB交于點M.
(Ⅰ)求橢圓G的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線l,使得△BOP的面積是△BMQ的面積的3倍?若存在,求直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動點,且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點的三個面上的正投影的面積之和( 。
A. 有最小值B. 有最大值C. 為定值3D. 為定值2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若對任意恒成立,求實數(shù)的取值范圍.
(2)設(shè)函數(shù)在區(qū)間上有兩個極值點.
(i)求實數(shù)的取值范圍;
(ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐P–ABC中,PA⊥平面ABC,D是棱PB的中點,已知PA=BC=2,AB=4,CB⊥AB,則異面直線PC,AD所成角的余弦值為
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會必須打好的三大攻堅戰(zhàn)之一,為堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村扶貧. 此幫扶單位為了了解某地區(qū)貧困戶對其所提供的幫扶的滿意度,隨機(jī)調(diào)查了40個貧困戶,得到貧困戶的滿意度評分如下:
貧困戶編號 | 評分 | 貧困戶編號 | 評分 | 貧困戶編號 | 評分 | 貧困戶編號 | 評分 | |||
1 2 3 4 5 6 7 8 9 10 | 78 73 81 92 95 85 79 84 63 86 | 11 12 13 14 15 16 17 18 19 20 | 88 86 95 76 97 78 88 82 76 89 | 21 22 23 24 25 26 27 28 29 30 | 79 83 72 74 91 66 80 83 74 82 | 31 32 33 34 35 36 37 38 39 40 | 93 78 75 81 84 77 81 76 85 89 |
用系統(tǒng)抽樣法從40名貧困戶中抽取容量為10的樣本,且在第一分段里隨機(jī)抽到的評分?jǐn)?shù)據(jù)為92.
(1)請你列出抽到的10個樣本的評分?jǐn)?shù)據(jù);
(2)計算所抽到的10個樣本的均值和方差;
(3)在(2)條件下,若貧困戶的滿意度評分在之間,則滿意度等級為“級”.運用樣本估計總體的思想,現(xiàn)從(1)中抽到的10個樣本的滿意度為“級”貧困戶中隨機(jī)地抽取2戶,求所抽到2戶的滿意度均評分均“超過80”的概率.
(參考數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com