【題目】某中學(xué)用簡(jiǎn)單隨機(jī)抽樣方法抽取了100名同學(xué),對(duì)其社會(huì)實(shí)踐次數(shù)進(jìn)行調(diào)查,結(jié)果如下:
男同學(xué)人數(shù) | 7 | 15 | 11 | 12 | 2 | 1 |
女同學(xué)人數(shù) | 5 | 13 | 20 | 9 | 3 | 2 |
若將社會(huì)實(shí)踐次數(shù)不低于12次的學(xué)生稱(chēng)為“社會(huì)實(shí)踐標(biāo)兵”.
(Ⅰ)將頻率視為概率,估計(jì)該校1600名學(xué)生中“社會(huì)實(shí)踐標(biāo)兵”有多少人?
(Ⅱ)從已抽取的8名“社會(huì)實(shí)踐標(biāo)兵”中隨機(jī)抽取4位同學(xué)參加社會(huì)實(shí)踐表彰活動(dòng).
(i)設(shè)為事件“抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)”,求事件發(fā)生的概率;
(ii)用表示抽取的“社會(huì)實(shí)踐標(biāo)兵”中男生的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
【答案】(Ⅰ);(Ⅱ)(i);(ii)見(jiàn)解析
【解析】
(Ⅰ)計(jì)算出樣本中“社會(huì)實(shí)踐標(biāo)兵”的頻率,從而估計(jì)出總體中的人數(shù);(Ⅱ)(i)計(jì)算出,利用對(duì)立事件概率公式求得結(jié)果;(ii)首先確定所有可能的取值,根據(jù)超幾何分布求解出每個(gè)取值對(duì)應(yīng)的概率,從而得到分布列;再根據(jù)數(shù)學(xué)期望計(jì)算公式求得結(jié)果.
(Ⅰ)樣本中“社會(huì)實(shí)踐標(biāo)兵”不低于次的學(xué)生有人
該校學(xué)生中“社會(huì)實(shí)踐標(biāo)兵”有:人
(Ⅱ)名“社會(huì)實(shí)踐標(biāo)兵”中有男同學(xué)人,女同學(xué)人
(i)為“抽取的位同學(xué)全是女同學(xué)”
(ii)由題意知:所有可能的取值為:
;;
;
則的分布列如下:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品。從這10件產(chǎn)品中任取3件,求:
(I) 取出的3件產(chǎn)品中一等品件數(shù)X的分布列和數(shù)學(xué)期望;
(II) 取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】立德中學(xué)和樹(shù)人中學(xué)各派一名學(xué)生組成一個(gè)聯(lián)隊(duì)參加一項(xiàng)智力競(jìng)賽,這個(gè)智力競(jìng)賽一共兩輪,在每一輪中,兩名同學(xué)各回答一次題目,已知,立德中學(xué)派出的學(xué)生每輪中答對(duì)問(wèn)題的概率都是,樹(shù)人中學(xué)派出的學(xué)生每輪中答對(duì)問(wèn)題的概率都是;每輪中,兩位同學(xué)答對(duì)與否互不影響,各論結(jié)果亦互不影響,求:
(Ⅰ)兩輪比賽后,立德中學(xué)的學(xué)生恰比樹(shù)人中學(xué)的學(xué)生答對(duì)題目的個(gè)數(shù)多個(gè)的概率;
(Ⅱ)兩輪比賽后,記為這兩名同學(xué)一共答對(duì)的題目數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形與均為菱形,,且.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若為線段上的一點(diǎn),且滿(mǎn)足直線與平面所成角的正弦值為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值和最小值;
(3)若對(duì)任意的,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市隨機(jī)抽取部分企業(yè)調(diào)查年上繳稅收情況(單位:萬(wàn)元),將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),年上繳稅收范圍是 ,樣本數(shù)據(jù)分組為,.
(Ⅰ)求直方圖中的值;
(Ⅱ)如果年上繳稅收不少于萬(wàn)元的企業(yè)可申請(qǐng)政策優(yōu)惠,若共抽取企業(yè)個(gè),試估計(jì)有多少企業(yè)可以申請(qǐng)政策優(yōu)惠;
(Ⅲ)從企業(yè)中任選個(gè),這個(gè)企業(yè)年上繳稅收少于萬(wàn)元的個(gè)數(shù)記為 ,求的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,垂直于梯形所在的平面,為的中點(diǎn),,四邊形為矩形,線段交于點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值;
(3)在線段上是否存在一點(diǎn),使得與平面所成角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為單位正方體,黑白兩只螞蟻從點(diǎn)出發(fā)沿棱向前爬行,每走完一條棱稱(chēng)為“走完一段”,白螞蟻爬行的路線是,黑螞蟻爬行的路線是,它們都遵循如下規(guī)則:所爬行的第段與第段所在直線必須是異面直線(其中是自然數(shù)),設(shè)黑、白螞蟻都走完2012段后各停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩只螞蟻的距離是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】教育學(xué)家分析發(fā)現(xiàn)加強(qiáng)語(yǔ)文閱讀理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗(yàn)證這個(gè)結(jié)論,從該校選擇甲乙兩個(gè)同類(lèi)班級(jí)進(jìn)行試驗(yàn),其中甲班加強(qiáng)閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無(wú)額外訓(xùn)練,一段時(shí)間后進(jìn)行數(shù)學(xué)應(yīng)用題測(cè)試,統(tǒng)計(jì)數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | |||
乙班 | |||
總計(jì) |
(1)能否據(jù)此判斷有把握認(rèn)為加強(qiáng)語(yǔ)文閱讀訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān)?
(2)經(jīng)過(guò)多次測(cè)試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在分鐘,小剛正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在分鐘,現(xiàn)小明、小剛同時(shí)獨(dú)立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比小明先正確解答完的概率;
(3)現(xiàn)從乙班成績(jī)優(yōu)秀的名同學(xué)中任意抽取兩人,并對(duì)他們的答題情況進(jìn)行全程研究,記兩人中被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附表及公式:
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com