【題目】如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直.EF∥AC,AB= ,CE=EF=1. (Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE.

【答案】證明:(Ⅰ)設(shè)AC于BD交于點(diǎn)G. 因?yàn)镋F∥AG,且EF=1,AG= AC=1,
所以四邊形AGEF為平行四邊形,
所以AF∥EG,
因?yàn)镋G平面BDE,AF平面BDE,
所以AF∥平面BDE.
(Ⅱ)連接FG.因?yàn)镋F∥CG,EF=CG=1,
且CE=1,所以平行四邊形CEFG為菱形.所以CF⊥EG.
因?yàn)樗倪呅蜛BCD為正方形,所以BD⊥AC.
又因?yàn)槠矫鍭CEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,
所以BD⊥平面ACEF.
所以CF⊥BD.又BD∩EG=G,
所以CF⊥平面BDE.

【解析】(Ⅰ)證明平面BDE外的直線AF平行平面BDE內(nèi)的直線GE,即可證明AF∥平面BDE;(Ⅱ)證明CF垂直平面BDF內(nèi)的兩條相交直線:BD、EG,即可證明求CF⊥平面BDF;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行,以及對(duì)直線與平面垂直的判定的理解,了解一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.

(1)證明:平面PQC⊥平面DCQ
(2)求二面角Q﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),B(0,2),C(cosα,sinα).
(1)若 ,且α∈(0,π),求角α的值;
(2)若 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件,求直線的方程:
(Ⅰ)過直線l1:2x﹣3y﹣1=0和l2:x+y+2=0的交點(diǎn),且垂直于直線2x﹣y+7=0;
(Ⅱ)過點(diǎn)(﹣3,1),且在兩坐標(biāo)軸上的截距之和為﹣4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD的四條側(cè)棱長相等,底面ABCD為正方形,M為PB的中點(diǎn),求證:
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求異面直線PD與CM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程x2+y2﹣2(m+3)x+2(1﹣4m2)y+16m4+9=0表示一個(gè)圓.
(1)求實(shí)數(shù)m的取值范圍;
(2)求該圓半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB⊥BC.設(shè)D,E分別為PA,AC中點(diǎn).
(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:BC⊥平面PAB;
(Ⅲ)試問在線段AB上是否存在點(diǎn)F,使得過三點(diǎn) D,E,F(xiàn)的平面內(nèi)的任一條直線都與平面PBC平行?若存在,指出點(diǎn)F的位置并證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值與最小值之和為12,則實(shí)數(shù)a的值為(
A.
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象與軸相切,且切點(diǎn)在軸的正半軸上.

(1)若函數(shù)上的極小值不大于,求的取值范圍;

(2)設(shè)),證明: 上的最小值為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案