設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知Sn=2an-2n+1 (n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=,數(shù)列{bn}的前n項(xiàng)和為Bn,若存在整數(shù)m,使對任意n∈N*且n≥2,都有B3n-Bn成立,求m的最大值;
(Ⅲ)令cn=(-1)n+1,數(shù)列{cn}的前n項(xiàng)和為Tn,求證:當(dāng)n∈N*且n≥2時(shí),T2n
【答案】分析:(Ⅰ)根據(jù)題中給出的設(shè)數(shù)列{an}的前n項(xiàng)和為Sn便可求出數(shù)列{}是公差為1的等差數(shù)列,將a1=4代入便可求出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)先求出數(shù)列bn的通項(xiàng)公式,然后求寫前n項(xiàng)和Bn的表達(dá)式,進(jìn)而求出的B3n-Bn表達(dá)式,然后證明B3n-Bn為遞增數(shù)列,即當(dāng)n=2時(shí),B3n-Bn最小,便可求出m的最大值.
(Ⅲ)先將所需證明的不等式化簡為++…+,然后利用函數(shù)的導(dǎo)函數(shù)證明g(x)=ln(x+1)-為增函數(shù),即可證明當(dāng)n∈N*且n≥2時(shí),T2n
解答:解:(Ⅰ)由Sn=2an-2n+1,得Sn-1=2an-1-2n(n≥2).
兩式相減,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是-=1,所以數(shù)列{}是公差為1的等差數(shù)列.(2分)
又S1=a1=2a1-22,,所以a1=4.
所以=2+(n-1)=n+1,故an=(n+1)•2n.(4分)
(注:該問也可用歸納,猜想,數(shù)學(xué)歸納法證明的方法)
(Ⅱ)因?yàn)閎n==log2n2=,則B3n-Bn=+++…+
令f(n)=++…+
則f(n+1)=++…++++
所以f(n+1)-f(n)=++-=+-+-=0.
即f(n+1)>f(n),所以數(shù)列{f(n)}為遞增數(shù)列.(7分)
所以當(dāng)n≥2時(shí),f(n)的最小值為f(2)=+++=
據(jù)題意,,即m<19.又m為整數(shù),
故m的最大值為18.(8分)
(Ⅲ)證明:因?yàn)閏n=(-1)n+1,則當(dāng)n≥2時(shí),
T2n=1-+-+…+-=(1++++…++)-2(++…+)=++…+.(9分)
下面證++…+
先證一個(gè)不等式,當(dāng)x>0時(shí),ln(x+1)>
令g(x)=ln(x+1)-(x>0),則g′(x)=-=>0,
∴g(x)在(0,+∞)時(shí)單調(diào)遞增,
則g(x)>g(0)=0,即當(dāng)x>0時(shí),ln(x+1)>,
令x=,則ln⇒ln(n+1)-lnn>
∴l(xiāng)n(n+2)-ln(n+1)>,
ln(n+3)-ln(n-2)>,
…,
ln(2n)-ln(2n-1)>
以上n個(gè)式相加,即有l(wèi)n(2n)-lnn>++…+
++…+<ln(2n)-lnn<ln2<
從而原不等式得證.(14分)
點(diǎn)評:本題主要考查等差數(shù)列、等比數(shù)列、放縮法等基礎(chǔ)知識,考查綜合運(yùn)用知識分析問題和解決問題的能力,解題時(shí)注意整體思想和轉(zhuǎn)化思想的運(yùn)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習(xí)冊答案