某程序框圖如圖所示,該程序運行后輸出的值為5,則判斷框內(nèi)應(yīng)填入( 。
A、k<2?B、k<3?
C、k<4?D、k<5?
考點:程序框圖
專題:算法和程序框圖
分析:根據(jù)程序依次進(jìn)行運行,直到滿足條件即可得到結(jié)論.
解答: 解:第一次循環(huán),S=20-1=19,k=1,
第二次循環(huán),滿足條件,S=19-2=17,k=2,
第三次循環(huán),滿足條件,S=17-22=13,k=3,
第四次循環(huán),滿足條件,S=13-23=5,k=4,
此時k=4不滿足條件,程序終止,輸出S=5,
故判斷框內(nèi)應(yīng)填入是條件是k<4?
故選:C
點評:本題主要考查程序框圖的識別和判定,根據(jù)條件依次進(jìn)行運行是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)是定義在R上的可導(dǎo)函數(shù),則下列說法不正確的是( 。
A、若函數(shù)在x=x0時取得極值,則f′(x0)=0
B、若f′(x0)=0,則函數(shù)在x=x0處取得極值
C、若在定義域內(nèi)恒有f′(x0)=0,則y=f(x)是常數(shù)函數(shù)
D、函數(shù)f(x)在x=x0處的導(dǎo)數(shù)是一個常數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a,b,且a<0<b,則下列不等式成立的是( 。
A、a2<b2
B、
1
a
1
b
C、
1
a-b
1
a
D、
1
ab2
1
a2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:m≥
1
4
,q:一元二次方程x2-x+m=0有實數(shù)根,則¬p是q的( 。l件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C:(x-1)2+(y+2)2=5的圓心坐標(biāo)和半徑分別為( 。
A、(1,2),5
B、(1,-2),5
C、(1,-2),
5
D、(-1,2),
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=cos2x的圖象向右平移
π
4
個單位長度,再將所得圖象的所有點的橫坐標(biāo)縮短到原來的2倍(縱坐標(biāo)不變),得到的函數(shù)解析式為( 。
A、y=sinx
B、y=-cos4x
C、y=sin4x
D、y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x≥1
x-3y+4≤0
3x+5y≤30

(1)求目標(biāo)函數(shù)z=2x-y的最大值和最小值;
(2)求z=
y+5
x+5
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐S-ABC,SA=4,AB=6,SO⊥面ABC.
(1)求高SO,斜高SD;
(2)求S-ABC表面積與體積;
(3)求側(cè)棱SA與面ABC所成角的正切值;
(4)求二面角S-BC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖(1),等腰梯形ABCD中,AD∥BC,AB=AD=2,∠ABC=60°,E是BC的中點,將△ABE沿AE折起,得到如圖(2)所示的四棱錐B′-AECD,連結(jié)B′C,B′D,F(xiàn)是CD的中點,P是B′C的中點,且PF=
6
2


(1)求證:AE⊥平面PEF;
(2)求二面角B′-EF-A的余弦值.

查看答案和解析>>

同步練習(xí)冊答案