【題目】函數(shù).

(1)當(dāng)時(shí),求在區(qū)間上的最值;

(2)討論的單調(diào)性;

(3)當(dāng)時(shí),有恒成立,求的取值范圍.

【答案】12)當(dāng)時(shí),遞增;當(dāng)時(shí),遞增,在上遞減.當(dāng)時(shí),遞減.(3

【解析】試題分析:(1)的最值只能在和區(qū)間的兩個(gè)端點(diǎn)取到,因此,通過(guò)算出上述點(diǎn)并比較其函數(shù)值可得函數(shù)的最值;(2)算出,對(duì)的取值范圍分情況討論即可;(3)根據(jù)(2)中得到的單調(diào)性化簡(jiǎn)不等式,從而求解不等式,解得的取值范圍.

試題解析:(1)當(dāng)時(shí),,∴,

的定義域?yàn)?/span>,∴由,得.……………………2分

在區(qū)間上的最值只可能在取到,

,,,……4分

(2),

①當(dāng),即時(shí),,∴上單調(diào)遞減;……5分

②當(dāng)時(shí),,∴上單調(diào)遞增;…………………………6分

③當(dāng)時(shí),由,∴(舍去)

上單調(diào)遞增,在上單調(diào)遞減;……………………8分

綜上,當(dāng)時(shí),單調(diào)遞增;

當(dāng)時(shí),單調(diào)遞增,在上單調(diào)遞減.

當(dāng)時(shí),單調(diào)遞減;

(3)由(2)知,當(dāng)時(shí),

即原不等式等價(jià)于,…………………………12分

,整理得,

,………………13分

又∵,∴的取值范圍為.……………………14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2-a-lnx,其中aR.

)討論f(x)的單調(diào)性;

)當(dāng)時(shí),恒成立,求a的取值范圍.(其中,e=2.718為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,

其中,若函數(shù),且它的最小正周期為

(普通中學(xué)只做1,2問(wèn))

(1)求的值,并求出函數(shù)的單調(diào)遞增區(qū)間;

(2)當(dāng)(其中)時(shí),記函數(shù)的最大值與最小值分

別為,設(shè),求函數(shù)的解

析式;

(3)在第(2)問(wèn)的前提下,已知函數(shù), ,若對(duì)于任意, ,總存在,使得

成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為, ,點(diǎn)在橢圓上.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個(gè)不同交點(diǎn)、時(shí),能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸,焦距為2,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè),過(guò)橢圓左焦點(diǎn)的直線兩點(diǎn),若對(duì)滿足條件的任意直線,不等式)恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分14本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8

沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開(kāi)始時(shí)細(xì)沙全部在上部容器中,細(xì)通過(guò)連接管道全部到下部容器所需要的時(shí)間稱(chēng)為該沙漏的一個(gè)沙時(shí)。如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),高度為圓錐高度的細(xì)管長(zhǎng)忽略不計(jì)

1如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個(gè)沙時(shí)為多少秒精確1秒?

2細(xì)全部漏入下部,恰好堆成個(gè)一蓋沙漏底的圓錐形沙,求此錐形高度精確0.1cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖,其中成績(jī)分組區(qū)間如下:

組號(hào)

第一組

第二組

第三組

第四組

第五組

分組

[5060

[60,70

[7080

[80,90

[90100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分;

3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】條件;條件:直線與圓相切,則的( )

A. 充分必要條件 B. 必要不充分條件

C. 充分不必要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)為1的正方體ABCD—A1B1C1D1中,

M、N分別是AB1、BC1的中點(diǎn).

(Ⅰ)求證:直線MN//平面ABCD.

(Ⅱ)求B1到平面A1BC1的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案