已知函數(shù)f(x)=aln(1+ex)-(a+1)x,(其中a>0),點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))從左到右依次是函數(shù)y=f(x)圖象上三點,且2x2=x1+x3
(Ⅰ)證明:函數(shù)f(x)在(-∞,+∞)上是減函數(shù);
(Ⅱ)求證:△ABC是鈍角三角形;
(Ⅲ)試問△ABC能否是等腰三角形?若能,求△ABC面積的最大值;若不能,請說明理由.
【答案】分析:(Ⅰ)∵f(x)=aln(1+ex)-(a+1)x,欲證函數(shù)f(x)在(-∞,+∞)上是單調(diào)減函數(shù),只須證明其導(dǎo)數(shù)f′(x)<0即可;
(Ⅱ)先設(shè)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))且x1<x2<x3,欲證:△ABC是鈍角三角形,只須證明其中一個內(nèi)角為鈍角即可,結(jié)合向量的坐標(biāo)運(yùn)算,只須證明:即得;
(Ⅲ)假設(shè)△ABC為等腰三角形,則只能是,再利用平面內(nèi)兩點的距離公式將點的坐標(biāo)代入計算,如出現(xiàn)矛盾,則△ABC不可能為等腰三角形,如不矛盾,則△ABC能是等腰三角形.
解答:解:(Ⅰ)∵f(x)=aln(1+ex)-(a+1)x,∴恒成立,
所以函數(shù)f(x)在(-∞,+∞)上是單調(diào)減函數(shù).(3分)
(Ⅱ)證明:據(jù)題意A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))且x1<x2<x3,
由(Ⅰ)知f(x1)>f(x2)>f(x3),x2=(4分)
可得A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))三點不共線
(反證法:否則,得x1=x3

(6分)
∵x1-x2<0,x3-x2>0,f(x1)-f(x2)>0,f(x3)-f(x2)<0,∴,∴
即△ABC是鈍角三角形(8分)
(Ⅲ)假設(shè)△ABC為等腰三角形,則只能是
即:(x1-x22+[f(x1)-f(x2)]2=(x3-x22+[f(x3)-f(x2)]2∵x2-x1=x3-x2∴[f(x1)-f(x2)]2=[f(x3)-f(x2)]2
即2f(x2)=f(x1)+f(x3①(11分)
而事實上,
由于,故(2)式等號不成立.這與(1)式矛盾.
所以△ABC不可能為等腰三角形.(13分)
點評:本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、數(shù)量積表示兩個向量的夾角、兩點間距離公式的應(yīng)用等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案