6.如圖所示,該幾何體是由一個直三棱柱ADE-BCF和一個正四棱錐P-ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P-ABCD的高h,使得二面角C-AF-P的余弦值是$\frac{2\sqrt{2}}{3}$.

分析 (Ⅰ)推導出AD⊥AF,AD⊥AB,從而AD⊥平面ABEF,由此能證明平面PAD⊥平面ABFE.
(Ⅱ)以A 為原點,AB、AE、AD的正方向為x,y,z軸,建立空間直角坐標系A-xyz,利用向量法能求出h的值.

解答 證明:(Ⅰ)∵幾何體是由一個直三棱柱ADE-BCF和一個正四棱錐P-ABCD組合而成,
∴AD⊥AF,AD⊥AB,
又AF∩AB=A,
∴AD⊥平面ABEF,
又AD?平面PAD,
∴平面PAD⊥平面ABFE.
解:(Ⅱ)以A 為原點,AB、AE、AD的正方向為x,y,z軸,建立空間直角坐標系A-xyz
設正四棱棱的高為h,AE=AD=2,
則A(0,0,0),F(xiàn)(2,2,0),C(2,0,2),P(1,-1,1)
設平面ACF的一個法向量$\overrightarrow{m}$=(x,y,z),
$\overrightarrow{AF}$=(2,2,0),$\overrightarrow{AC}$=(2,0,2),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AF}=2x+2y=0}\\{\overrightarrow{m}•\overrightarrow{AC}=2x+2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,-1,-1),
設平面ACP的一個法向量$\overrightarrow{n}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AF}=2a+2b=0}\\{\overrightarrow{n}•\overrightarrow{AP}=a-hb+c=0}\end{array}\right.$,取b=1,則$\overrightarrow{n}$=(-1,1,1+h),
二面角C-AF-P的余弦值$\frac{2\sqrt{2}}{3}$,
∴|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{|-1-1-(1+h)|}{\sqrt{3}•\sqrt{2+(h+1)^{2}}}$=$\frac{2\sqrt{2}}{3}$,
解得h=1.

點評 本題考查面面垂直的證明,考查正四棱錐的高的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.若函數(shù)f(x),g(x)分別是定義域為R的奇函數(shù)、偶函數(shù),且f(x)=g(x)+ex則( 。
A.g(0)<f(2)<f(3)B.g(0)<f(3)<f(2)C.f(2)<g(0)<f(3)D.f(2)<f(3)<g(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.點(x,y)在映射f下的對應元素為(x+y,x-y),則點(2,0)在f作用下的對應元素為( 。
A.(0,2)B.(2,0)C.(2,2)D.(-1,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,多面體ABCDS中,面ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,$SD=\sqrt{3}AD$.
(1)求多面體ABCDS的體積;
(2)求二面角A-SB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD,PA⊥面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=2PA=4BE=4
(1)求證:DE⊥面PAC
(2)取PD中點Q,求三棱錐P-QBE體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.給出以下四個命題:①若a>b,則$\frac{1}{a}$<$\frac{1}$;②若ac2>bc2,則a>b③若a>|b|,則a>b;④若a>b,則a2>b2.其中正確的是( 。
A.②④B.①③C.①②D.②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,甲、乙兩位同學要測量河對岸A,B兩點間的距離,今沿河岸選取相距40米的C,D兩點,測得∠ACB=60°,∠BCD=45°,∠ADC=30°,∠CDB=90°求A,B兩點間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知一個動點P在圓x2+y2=36上移動,它與定點Q(4,0)所連線段的中點為M.
(1)求點M的軌跡方程.
(2)過定點(0,-3)的直線l與點M的軌跡交于不同的兩點A(x1,y1),B(x2,y2)且滿足$\frac{x_1}{x_2}$+$\frac{x_2}{x_1}$=$\frac{21}{2}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知點P是橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1上的一點,且以點P及焦點F1,F(xiàn)2為頂點的三角形面積等于1,求點P的坐標.

查看答案和解析>>

同步練習冊答案