選修4-1:幾何證明選講
如圖,在Rt△ABC中,C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線;
(2)若AD=2
6
,AE=6
2
,求EC的長(zhǎng).
分析:(1)取BD的中點(diǎn)O,連接OE,易證BC∥OE,從而有OE⊥AC,即證得AC是△BDE的外接圓的切線;
(2)設(shè)⊙O的半徑為r,在△AOE中,由OA2=OE2+AE2可求得r=2
6
,從而可得∠A=30°,∠AOE=60°,∠CBE=∠OBE=30°,于是可求EC.
解答:解:(1)取BD的中點(diǎn)O,連接OE,
∵BE平分∠ABC,
∴∠CBE=∠OBE,
又∵OB=OE,
∴∠OBE=∠BEO,
∴∠CBE=∠BEO,
∴BC∥OE,
∴∠C=90°,
∴OE⊥AC,
∴AC是△BDE的外接圓的切線;
(2)設(shè)⊙O的半徑為r,在△AOE中,OA2=OE2+AE2,即(r+2
6
)
2
=r2+(6
2
)
2
,
解得r=2
6

∴OA=2OE,
∴∠A=30°,∠AOE=60°.
∴∠CBE=∠OBE=30°,
∴EC=
1
2
BE=
1
2
×
3
r=
1
2
×
3
×2
6
=3
2
點(diǎn)評(píng):本題考查直線與圓相切,考查三角形中的邊角運(yùn)算,突出考查推理分析與運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點(diǎn)H,HB=2.
(1)求DE的長(zhǎng);
(2)延長(zhǎng)ED到P,過(guò)P作圓O的切線,切點(diǎn)為C,若PC=2
5
,求PD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點(diǎn)A,D為PA的中點(diǎn),
過(guò)點(diǎn)D引割線交⊙O于B,C兩點(diǎn),求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過(guò)點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經(jīng)過(guò)圓上O的點(diǎn)C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長(zhǎng)BC到點(diǎn)D,使得CD=AC,連結(jié)AD交圓O于點(diǎn)E,連結(jié)BE與AC交于點(diǎn)F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案