已知命題p:1-a•2x≥0在x∈(-∞,0]恒成立,命題q:?x∈R,ax2-x+a>0.若命題p或q為真,命題p且q為假,求實(shí)數(shù)a的范圍.
考點(diǎn):函數(shù)恒成立問題,復(fù)合命題的真假
專題:函數(shù)的性質(zhì)及應(yīng)用,簡易邏輯
分析:根據(jù)不等式恒成立的條件,分別求出p,q成立的等價(jià)條件,利用復(fù)合命題之間的關(guān)系即可求出實(shí)數(shù)a的范圍.
解答: 解:命題p:1-a•2x≥0在x∈(-∞,0]上恒成立.
即:a≤(
1
2
)x
在x∈(-∞,0]上恒成立.
∵(
1
2
x≥1,x∈(-∞,0]
∴a≤1,
即命題p:a≤1.
命題q:?x∈R,ax2-x+a>0.
顯然當(dāng)a≤0時(shí),不合題意,
則:
a>0
(-1)2-4a2<0
,
a>
1
2

∴命題q:a>
1
2
,
∵p或q為真,p且q為假
∴p和q一真一假,
a≤1
a≤
1
2
a>1
a>
1
2
,
a≤
1
2
或a>1
,
∴a的取值范圍為:a≤
1
2
或a>1
點(diǎn)評(píng):本題主要考查復(fù)合命題與簡單命題之間的關(guān)系,利用不等式恒成立的等價(jià)條件是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

證明:
n
k=1
1
k2
5
3
,(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2+Dx-6y+1=0上有兩點(diǎn)P、Q關(guān)于直線x-y+4=0對稱.
(1)求圓C的半徑;
(2)若OP⊥OQ,O為坐標(biāo)原點(diǎn),求PQ方程;
(3)直線l:(2m-1)x-(m-1)y+8m-6=0被圓C截得弦長最短時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對于一切正整數(shù)n,不等式(1+
1
2
)(1+
1
4
)(1+
1
6
)…(1+
1
2n
)≤a
2n+1
恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中國男子籃球職業(yè)聯(lián)賽總決賽采用七場四勝制(即先勝四場者獲勝).進(jìn)入總決賽的甲乙兩隊(duì)中,若每一場比賽甲隊(duì)獲勝的概率為
2
3
,乙隊(duì)獲勝的概率為
1
3
,假設(shè)每場比賽的結(jié)果互相獨(dú)立.現(xiàn)已賽完兩場,乙隊(duì)以2:0暫時(shí)領(lǐng)先.
(Ⅰ)求甲隊(duì)獲得這次比賽勝利的概率;
(Ⅱ)設(shè)比賽結(jié)束時(shí)兩隊(duì)比賽的場數(shù)為隨機(jī)變量X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)建設(shè)集團(tuán)公司共有3n(n≥2,n∈N*)個(gè)施工隊(duì),編號(hào)分別為1,2,3,…3n.現(xiàn)有一項(xiàng)建設(shè)工程,因?yàn)楣と藬?shù)量和工作效率的差異,經(jīng)測算:如果第i(1≤i≤3n)個(gè)施工隊(duì)每天完成的工作量都相等,則它需要i天才能獨(dú)立完成此項(xiàng)工程.
(1)求證第n個(gè)施工隊(duì)用m(1≤m<n,m∈N*)天完成的工作量不可能大于第n+k(1≤k≤2n)個(gè)施工隊(duì)用m+k天完成的工作量;
(2)如果該集團(tuán)公司決定由編號(hào)為n+1,n+2,…,3n共2n個(gè)施工隊(duì)共同完成,求證它們最多不超過兩天即可完成此項(xiàng)工作.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3cosxcosx的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時(shí)拋擲4枚硬幣,其中恰有2枚正面朝上的概率是
 
.(結(jié)果用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某學(xué)校組織的校園十佳歌手評(píng)選活動(dòng)中,某選手得分的莖葉圖如圖所示.去掉一個(gè)最高分和一個(gè)最低分后,則該選手得分的平均數(shù)等于
 

查看答案和解析>>

同步練習(xí)冊答案