【題目】下列圖象中,可能是函數(shù)的圖象的是( )
A. B.
C. D.
【答案】D
【解析】
根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),按a的值分5種情況討論,分析函數(shù)f(x)的定義域、是否經(jīng)過(guò)原點(diǎn)以及在第一象限的單調(diào)性,綜合即可得答案.
根據(jù)題意,函數(shù)f(x)=xa(ex+e﹣x),其導(dǎo)數(shù)f′(x)=axa﹣1(ex+e﹣x)+xa(ex﹣e﹣x),
又由a∈Z,
當(dāng)a=0,f(x)=ex+e﹣x,(x≠0)其定義域?yàn)?/span>{x|x≠0},f(x)為偶函數(shù),不經(jīng)過(guò)原點(diǎn)且在第一象限為增函數(shù),沒(méi)有選項(xiàng)符合;
當(dāng)a為正偶數(shù)時(shí),f(x)=xa(ex+e﹣x),其定義域?yàn)?/span>R,f(x)為偶函數(shù)且過(guò)原點(diǎn),在第一象限為增函數(shù),沒(méi)有選項(xiàng)符合,
當(dāng)a為正奇數(shù)時(shí),f(x)=xa(ex+e﹣x),其定義域?yàn)?/span>R,f(x)為奇函數(shù)且過(guò)原點(diǎn),在第一象限為增函數(shù)且增加的越來(lái)越快,沒(méi)有選項(xiàng)符合,
當(dāng)a為負(fù)偶數(shù)時(shí),f(x)=xa(ex+e﹣x),其定義域?yàn)?/span>{x|x≠0},f(x)為偶函數(shù),不經(jīng)過(guò)原點(diǎn)且在第一象限先減后增,D選項(xiàng)符合;
當(dāng)a為負(fù)奇數(shù)時(shí),f(x)=xa(ex+e﹣x),其定義域?yàn)?/span>{x|x≠0},f(x)為奇函數(shù),不經(jīng)過(guò)原點(diǎn)且在第一象限先減后增,沒(méi)有選項(xiàng)符合,
綜合可得:D可能是函數(shù)f(x)=xa(ex+e﹣x)(a∈Z)的圖象;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】互聯(lián)網(wǎng)使我們的生活日益便捷,網(wǎng)絡(luò)外賣(mài)也開(kāi)始成為不少人日常生活中不可或缺的一部分,某市一調(diào)查機(jī)構(gòu)針對(duì)該市市場(chǎng)占有率較高的甲、乙兩家網(wǎng)絡(luò)外賣(mài)企業(yè)(以下外賣(mài)甲、外賣(mài)乙)的經(jīng)營(yíng)情況進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表:
1日 | 2日 | 3日 | 4日 | 5日 | |
外賣(mài)甲日接單x(百單) | 5 | 2 | 9 | 8 | 11 |
外賣(mài)乙日接單y(百單) | 2 | 3 | 10 | 5 | 15 |
(1)試根據(jù)表格中這五天的日接單量情況,從統(tǒng)計(jì)的角度說(shuō)明這兩家外賣(mài)企業(yè)的經(jīng)營(yíng)狀況;
(2)據(jù)統(tǒng)計(jì)表明,y與x之間具有線性關(guān)系.
①請(qǐng)用相關(guān)系數(shù)r對(duì)y與x之間的相關(guān)性強(qiáng)弱進(jìn)行判斷;(若,則可認(rèn)為y與x有較強(qiáng)的線性相關(guān)關(guān)系(r值精確到0.001))
②經(jīng)計(jì)算求得y與x之間的回歸方程為,假定每單外賣(mài)業(yè)務(wù)企業(yè)平均能獲純利潤(rùn)3元,試預(yù)測(cè)當(dāng)外賣(mài)乙日接單量不低于25百單時(shí),外賣(mài)甲所獲取的日純利潤(rùn)的大致范圍.(x值精確到0.01)
相關(guān)公式:,
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)其中為實(shí)數(shù).設(shè),為該函數(shù)圖象上的兩個(gè)不同的點(diǎn).
(1)指出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象在點(diǎn),處的切線互相平行,求的最小值;
(3)若函數(shù)的圖象在點(diǎn),處的切線重合,求的取值范圍.(只要求寫(xiě)出答案).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)滿足.
(1)求出動(dòng)點(diǎn)P的軌跡對(duì)應(yīng)曲線C的標(biāo)準(zhǔn)方程;
(2)一條縱截距為2的直線與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過(guò)原點(diǎn),求出直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面內(nèi)一個(gè)動(dòng)點(diǎn)M到定點(diǎn)F(3,0)的距離和它到定直線l:x=6的距離之比是常數(shù).
(1)求動(dòng)點(diǎn)M的軌跡T的方程;
(2)若直線l:x+y-3=0與軌跡T交于A,B兩點(diǎn),且線段AB的垂直平分線與T交于C,D兩點(diǎn),試問(wèn)A,B,C,D是否在同一個(gè)圓上?若是,求出該圓的方程;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)的坐標(biāo)為時(shí),的周長(zhǎng)恰為.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作直線交橢圓于兩點(diǎn),且 ,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐的棱長(zhǎng)均為6,其內(nèi)有個(gè)小球,球與三棱錐的四個(gè)面都相切,球與三棱錐的三個(gè)面和球都相切,如此類(lèi)推,…,球與三棱錐的三個(gè)面和球都相切(,且),則球的體積等于__________,球的表面積等于__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與橢圓切于點(diǎn),與圓交于點(diǎn),圓在點(diǎn)處的切線交于點(diǎn),為坐標(biāo)原點(diǎn),則的面積的最大值為( )
A.B.2C.D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)對(duì)任意的,,,恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com