【題目】已知直線與橢圓切于點(diǎn),與圓交于點(diǎn),圓在點(diǎn)處的切線交于點(diǎn),為坐標(biāo)原點(diǎn),則的面積的最大值為( )

A.B.2C.D.1

【答案】A

【解析】

設(shè)點(diǎn),利用四點(diǎn),,共圓,求得以為直徑的圓,與已知圓的方程相減得出直線的方程,直線與過(guò)點(diǎn)的橢圓的切線重合,兩個(gè)方程相等,可得,,再由橢圓的參數(shù)方程和向量數(shù)量積的坐標(biāo)表示和向量的模,結(jié)合三角形的面積公式和三角恒等變換以及三角函數(shù)的基本性質(zhì)求出所求的最大值。

設(shè),,由,,可得四點(diǎn),,共圓,

可得以為直徑的圓,方程為

聯(lián)立圓,相減可得的方程為,

與橢圓相切,可得過(guò)的切線方程為,即為,

由兩直線重合的條件可得,

由于在橢圓上,可設(shè),,

即有,

可得,

,

即有

,當(dāng)時(shí),

的面積取得最大值

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,,點(diǎn)的中點(diǎn).

求證:平面;

若直線與平面所成角為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)黨中央“扶貧攻堅(jiān)”的號(hào)召,某單位指導(dǎo)一貧困村通過(guò)種植紫甘薯來(lái)提高經(jīng)濟(jì)收入.紫甘薯對(duì)環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗(yàn),隨著溫度的升高,其死亡株數(shù)成增長(zhǎng)的趨勢(shì).下表給出了2017年種植的一批試驗(yàn)紫甘薯在溫度升高時(shí)6組死亡的株數(shù):

經(jīng)計(jì)算: , , , , , ,其中分別為試驗(yàn)數(shù)據(jù)中的溫度和死亡株數(shù), .

(1)若用線性回歸模型,求關(guān)于的回歸方程(結(jié)果精確到);

(2)若用非線性回歸模型求得關(guān)于的回歸方程為,且相關(guān)指數(shù)為.

(i)試與(1)中的回歸模型相比,用說(shuō)明哪種模型的擬合效果更好;

(ii)用擬合效果好的模型預(yù)測(cè)溫度為時(shí)該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).

附:對(duì)于一組數(shù)據(jù), ,……, ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為: ;相關(guān)指數(shù)為: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—5: 不等式選講

已知函數(shù)f(x) 的定義域?yàn)?/span>R.

()求實(shí)數(shù)m的取值范圍;

()m的最大值為n,當(dāng)正數(shù)a,b滿足 n時(shí),求7a4b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定橢圓,稱(chēng)圓心在原點(diǎn),半徑為的圓是橢圓的“伴橢圓”,若橢圓的一個(gè)焦點(diǎn)為,其短軸上一個(gè)端點(diǎn)到的距離為.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作橢圓的“伴隨圓”的動(dòng)弦,過(guò)點(diǎn)、分別作“伴隨圓”的切線,設(shè)兩切線交于點(diǎn),證明:點(diǎn)的軌跡是直線,并寫(xiě)出該直線的方程;

(3)設(shè)點(diǎn)是橢圓的“伴隨圓”上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作橢圓的切線,試判斷直線、是否垂直?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且,,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求的普通方程及的直角坐標(biāo)方程;

(2)若曲線與曲線分別交于點(diǎn),,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校共有學(xué)生2000人,其中男生1100人,女生900人為了調(diào)查該校學(xué)生每周平均課外閱讀時(shí)間,采用分層抽樣的方法收集該校100名學(xué)生每周平均課外閱讀時(shí)間(單位:小時(shí))

1)應(yīng)抽查男生與女生各多少人?

2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均課外閱讀時(shí)間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為.若在樣本數(shù)據(jù)中有38名女學(xué)生平均每周課外閱讀時(shí)間超過(guò)2小時(shí),請(qǐng)完成每周平均課外閱讀時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均課外閱讀時(shí)間與性別有關(guān)”.

男生

女生

總計(jì)

每周平均課外閱讀時(shí)間不超過(guò)2小時(shí)

每周平均課外閱讀時(shí)間超過(guò)2小時(shí)

總計(jì)

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),若函數(shù)的兩個(gè)極值點(diǎn)分別為,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,,點(diǎn)是邊上一點(diǎn),且,點(diǎn)的中點(diǎn),將沿著折起,使點(diǎn)運(yùn)動(dòng)到點(diǎn)處,且滿足.

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案