【題目】已知函數,.
(1)求函數的單調區(qū)間;
(2)當時,若恒成立,求實數的取值范圍.
【答案】(1)單調遞增區(qū)間為和,無單調遞減區(qū)間;(2).
【解析】
(1)化簡,求出,在定義域內,分別令求得的范圍,可得函數增區(qū)間,求得的范圍,可得函數的減區(qū)間;(2)設,則,對求導,分類討論,分別判斷的單調性,根據單調性求導的最值,驗證是否合題意即可
(1)因為(且),所以.
設,則.
當時,,是增函數,,所以.
故在上為增函數;
當時,,是減函數,,所以,所以在上為增函數.
故的單調遞增區(qū)間為和,無單調遞減區(qū)間.
(2)設,則.
已知條件即為當時.
因為為增函數,所以當時,.
①當時,,當且僅當,且時等號成立.
所以在上為增函數.
因此,當時,.
所以滿足題意.
②當時,由,得,解得.
因為,所,所以.
當時,,因此在上為減函數.
所以當時,,不合題意.
綜上所述,實數的取值范圍是.
科目:高中數學 來源: 題型:
【題目】網購是當前民眾購物的新方式,某公司為改進營銷方式,隨機調査了100名市民,統(tǒng)計其周平均網購
的次數,并整理得到如右的頻數直方圖,將周平均網購次數不小于4次的民眾稱為網購迷.這100名市民中,年齡不超過40歲的有65人,且網購迷中有5名市民的年齡超過40歲
(1)根據已知條件完成下面的2×2列聯(lián)表,能否在犯錯誤的概率不超過0.10的前提條件下認為網購迷與年齡不超過40歲有關?
(2)現(xiàn)從網購迷中按分層抽樣選5人代表進一步進行調查,若從5人代表中任意挑選2人,求挑選的2人中有年齡超過40歲的概率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,,且函數是偶函數.
(1)求的解析式;.
(2)若不等式在上恒成立,求n的取值范圍;
(3)若函數恰好有三個零點,求k的值及該函數的零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系,將曲線上的每一個點的橫坐標保持不變,縱坐標縮短為原來的,得到曲線,以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系, 的極坐標方程為.
(Ⅰ)求曲線的參數方程;
(Ⅱ)過原點且關于軸對稱的兩條直線與分別交曲線于、和、,且點在第一象限,當四邊形的周長最大時,求直線的普通方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[2019·濰坊期末]某鋼鐵加工廠新生產一批鋼管,為了了解這批產品的質量狀況,檢驗員隨機抽取了100件鋼管作為樣本進行檢測,將它們的內徑尺寸作為質量指標值,由檢測結果得如下頻率分布表和頻率分布直方圖:
分組 | 頻數 | 頻率 |
25.05~25.15 | 2 | 0.02 |
25.15~25.25 | ||
25.25~25.35 | 18 | |
25.35~25.45 | ||
25.45~25.55 | ||
25.55~25.65 | 10 | 0.1 |
25.65~25.75 | 3 | 0.03 |
合計 | 100 | 1 |
(1)求,;
(2)根據質量標準規(guī)定:鋼管內徑尺寸大于等于25.75或小于25.15為不合格,鋼管尺寸在或為合格等級,鋼管尺寸在為優(yōu)秀等級,鋼管的檢測費用為0.5元/根.
(i)若從和的5件樣品中隨機抽取2根,求至少有一根鋼管為合格的概率;
(ii)若這批鋼管共有2000根,把樣本的頻率作為這批鋼管的頻率,有兩種銷售方案:
①對該批剩余鋼管不再進行檢測,所有鋼管均以45元/根售出;
②對該批剩余鋼管一一進行檢測,不合格產品不銷售,合格等級的鋼管50元/根,優(yōu)等鋼管60元/根.
請你為該企業(yè)選擇最好的銷售方案,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com