已知橢圓)的右焦點為,離心率為.
(Ⅰ)若,求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于,兩點,分別為線段的中點. 若坐標原點在以為直徑的圓上,且,求的取值范圍.
(Ⅰ);(Ⅱ)

試題分析:(Ⅰ)由已知橢圓的半焦距,又,根據(jù)離心率的定義得,則,所以,從而得出所求橢圓的方程為.
(2)根據(jù)題意可設(shè)點、的坐標分別為、,聯(lián)立直線方程與橢圓方程,消去,則,,因為原點在圓上,所以,根據(jù)三角形中位線性質(zhì)可知四邊形為矩形,所以,又,所以,,因此,即,從而可整理得,又因為,所以,即,從而,所以,因此,解得.(如圖所示)

試題解析:(Ⅰ)由題意得,得.                            2分
結(jié)合,解得,.                         3分
所以,橢圓的方程為.                                4分
(Ⅱ)由 得.
設(shè).
所以,                               6分
依題意,,
易知,四邊形為平行四邊形,
所以,                                              7分
因為,
所以.        8分
,                                 9分
將其整理為 .               10分
因為,所以.          11分
所以,即.                     13分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:的一個焦點是(1,0),兩個焦點與短軸的一個端點構(gòu)成等邊三角形.
(1)求橢圓C的方程;
(2)過點Q(4,0)且不與坐標軸垂直的直線l交橢圓C于A、B兩點,設(shè)點A關(guān)于x軸的
對稱點為A1.求證:直線A1B過x軸上一定點,并求出此定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓上的點到其兩焦點距離之和為,且過點
(Ⅰ)求橢圓方程;
(Ⅱ)為坐標原點,斜率為的直線過橢圓的右焦點,且與橢圓交于點,,若,求△的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩點,直線AM、BM相交于點M,且這兩條直線的斜率之積為.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)記點M的軌跡為曲線C,曲線C上在第一象限的點P的橫坐標為1,直線PE、PF與圓)相切于點E、F,又PE、PF與曲線C的另一交點分別為Q、R.
求△OQR的面積的最大值(其中點O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓經(jīng)過點,離心率為
(1)求橢圓C的方程:
(2)過點Q(1,0)的直線l與橢圓C相交于A、B兩點,點P(4,3),記直線PA,PB的斜率分別為k1,k2,當k1·k2最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的兩個焦點為F1,F(xiàn)2,橢圓上一點M
滿足.
(1)求橢圓的方程;
(2)若直線L:y=與橢圓恒有不同交點A,B,且(O為坐標原點),求實數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線與曲線的交點個數(shù)是       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知過拋物線焦點的直線與拋物線相交于兩點,若,則    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以拋物線的焦點為圓心,且與雙曲線的兩條漸近線都相切的圓的方程為        .

查看答案和解析>>

同步練習冊答案