知橢圓的離心率為,定點,橢圓短軸的端點是,且.
(1)求橢圓的方程;
(2)設(shè)過點且斜率不為0的直線交橢圓兩點.試問軸上是否存在異于的定點,使平分?若存在,求出點的坐標(biāo);若不存在,說明理由.
(1);(2)存在,.

試題分析:(1)由離心率為可得到一個關(guān)于的方程,再根據(jù)MB1⊥MB2即可得;(2)本題采用“設(shè)而不求”的方法,將A,B兩點坐標(biāo)設(shè)出,但不求出.注意到平分,則直線的傾斜角互補(bǔ)這個性質(zhì),從而由斜率著手,以韋達(dá)定理為輔助工具,得出點P的坐標(biāo).
試題解析:(1)由
,知是等腰直角三角形,從而.
所以橢圓C的方程是.                                  5分
(2)設(shè),直線AB的方程為
,
所以 ①,②                       8分
平分,則直線的傾斜角互補(bǔ),
所以
設(shè),則有,                                 10分
代入上式,整理得,
將①②代入得,由于上式對任意實數(shù)都成立,所以.
綜上,存在定點,使平分PM平分∠APB.                       13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點.
(1)求證:OA⊥OB;
(2)當(dāng)DAOB的面積等于時,求k的值. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三點P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2為焦點且過點P的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點P、F1、F2關(guān)于直線y=x的對稱點分別為,求以為焦點且過點的雙曲線的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知分別是橢圓的左、右焦點,橢圓的離心率
(I)求橢圓的方程;(II)已知直線與橢圓有且只有一個公共點,且與直線相交于點.求證:以線段為直徑的圓恒過定點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F(xiàn)兩點,連結(jié)AE,AF分別與CD交于G、H

(Ⅰ)設(shè)EF中點為,求證:O、、B、P四點共圓
(Ⅱ)求證:OG =OH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線x2=2py(p>0)的焦點作斜率為1的直線與該拋物線交于A,B兩點,A,B在x軸上的正射影分別為D,C.若梯形ABCD的面積為12,則P="__________" .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

長為2的線段的兩個端點在拋物線上滑動,則線段中點軸距離的最小值是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是拋物線的焦點,、是該拋物線上的兩點,且,則線段的中點到軸的距離為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點與點在直線的兩側(cè),則下列說法:
(1);                   
(2)時,有最小值,無最大值;
(3)恒成立  
(4),, 則的取值范圍為(-
其中正確的是     (把你認(rèn)為所有正確的命題的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案