【題目】已知函數(shù)
(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求的取值范圍;
(2)若且關(guān)于的方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.
【答案】(1)a的取值范圍是(﹣∝,﹣1] (2)ln2﹣2<b≤﹣
【解析】
本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的 運(yùn)用。求解函數(shù)的單調(diào)性,以及函數(shù)與方程根的綜合運(yùn)用。
(1)依題意函數(shù)在定義域內(nèi)單調(diào)遞增,即在時恒成立,即在恒成立.
則分離參數(shù)的思想得到在恒成立,即
(2)利用構(gòu)造函數(shù),利用函數(shù)的單調(diào)性,得到函數(shù)的極值,從而研究函數(shù)圖像與坐標(biāo)軸的交點問題,得到方程的解。
解: (1)
依題意在時恒成立,即在恒成立.
則在恒成立,即
當(dāng)時,取最小值
∴的取值范圍是………………6分
(2)
設(shè)則列表:
極大值 | 極小值 |
∴極小值,極大值,又……8分
方程在[1,4]上恰有兩個不相等的實數(shù)根.
則, 得…………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:關(guān)于的不等式無解;命題:指數(shù)函數(shù)是上的增函數(shù).
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若滿足為假命題且為真命題的實數(shù)取值范圍是集合,集合,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,m∈R.
(1)若m=3,求A∩B;
(2)已知命題p:x∈A,命題q:x∈B,若q是p的必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明從街道的E處出發(fā),先到F處與小紅會合,再一起到位于G處的老年公寓參加志愿者活動,則小明到老年公寓可以選擇的最短路徑條數(shù)為( 。
A. 9B. 12C. 18D. 24
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性,并加以證明;
(2)用定義證明函數(shù)在區(qū)間上為增函數(shù);
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,短軸的兩個頂點與,構(gòu)成面積為2的正方形.
(Ⅰ)求的方程;
(Ⅱ)直線與橢圓在軸的右側(cè)交于點,,以為直徑的圓經(jīng)過點,的垂直平分線交軸于點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)兩點.
(1)求的中垂線方程;
(2)求過點且與直線平行的直線的方程;
(3)一束光線從點射向(2)中的直線,若反射光線過點,求反射光線所在的直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com