【題目】已知函數(shù)f(x)=log3x.
(1)求f(45)﹣f(5)的值;
(2)若函數(shù)y=g(x)(x∈R)是奇函數(shù),當(dāng)x>0時,g(x)=f(x),求函數(shù) y=g(x)的表達(dá)式.
【答案】
(1)
解:∵函數(shù)f(x)=log3x.
∴f(45)﹣f(5)=log345﹣log33=log39=2
(2)
解:若函數(shù)y=g(x)(x∈R)是奇函數(shù),當(dāng)x>0時,g(x)=f(x)=log3x,
∴當(dāng)x<0時,﹣x>0,
g(x)=﹣g(﹣x)=﹣log3(﹣x),
又由g(0)=0得:
g(x)=
【解析】(1)由已知中函數(shù)f(x)=log3x,結(jié)合對數(shù)的運算性質(zhì),可得f(45)﹣f(5)的值;(2)根據(jù)函數(shù)y=g(x)(x∈R)是奇函數(shù),當(dāng)x>0時,g(x)=f(x),可得函數(shù) y=g(x)的表達(dá)式.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(1)=0,當(dāng)x<0時,xf′(x)+f(x)>0,則使得f(x)<0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線: (t為參數(shù))與曲線C: (θ為參數(shù))相交于不同的兩點A,B.
(1)若α= ,求線段AB的長度;
(2)若直線的斜率為 ,且有已知點P(2, ),求證:|PA||PB|=|OP|2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè), .
(1)若,求的單調(diào)區(qū)間;
(2)討論在區(qū)間上的極值點個數(shù);
(3)是否存在,使得在區(qū)間上與軸相切?若存在,求出所有的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植基地將編號分別為1,2,3,4,5,6的六個不同品種的馬鈴薯種在如圖所示的
A | B | C | D | E | F |
這六塊實驗田上進(jìn)行對比試驗,要求這六塊實驗田分別種植不同品種的馬鈴薯,若種植時要求編號1,3,5的三個品種的馬鈴薯中至少有兩個相鄰,且2號品種的馬鈴薯不能種植在A、F這兩塊實驗田上,則不同的種植方法有 ( )
A. 360種 B. 432種 C. 456種 D. 480種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從0,1,2,3,4這五個數(shù)中任選三個不同的數(shù)組成一個三位數(shù),記X為所組成的三位數(shù)各位數(shù)字之和.
(1)求X是奇數(shù)的概率;
(2)求X的概率分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科技公司生產(chǎn)一種手機加密芯片,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于為合格品,小于為次品.現(xiàn)隨機抽取這種芯片共件進(jìn)行檢測,檢測結(jié)果統(tǒng)計如表:
測試指標(biāo) | |||||
芯片數(shù)量(件) |
已知生產(chǎn)一件芯片,若是合格品可盈利元,若是次品則虧損元.
(Ⅰ)試估計生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)件芯片所獲得的利潤不少于元的概率.
(Ⅱ)記為生產(chǎn)件芯片所得的總利潤,求隨機變量的分布列和數(shù)學(xué)期望
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com