【題目】已知函數(shù).

(Ⅰ)若函數(shù)有兩個(gè)零點(diǎn),求a的取值范圍;

(Ⅱ)恒成立,求a的取值范圍.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)先求導(dǎo),對(duì)分類(lèi)討論,求出單調(diào)區(qū)間,結(jié)合零點(diǎn)存在性定理,即可求出結(jié)論;

(Ⅱ)分離參數(shù)轉(zhuǎn)化為滿(mǎn)足上恒成立時(shí),的取值范圍,設(shè),通過(guò)求導(dǎo)求出,即可求解.

(Ⅰ)由已知得x0,.

①當(dāng)a0時(shí),,此時(shí)fx)是增函數(shù),故不存在兩個(gè)零點(diǎn);

②當(dāng)a0時(shí),由,得,

此時(shí) 時(shí),,此時(shí)是增函數(shù);

當(dāng) 時(shí), ,此時(shí)是減函數(shù),

所以時(shí),fx)取得極大值,由fx)有兩個(gè)零點(diǎn),

所以,解得.

,所以fx)在(0,)有唯一零點(diǎn).

再取,

.

所以fx)在有唯一實(shí)數(shù)根,

所以a的取值范圍是.

(Ⅱ)恒成立,即上恒成立,

上恒成立.

,則.

,則0.

所以上遞增,而

故存在使得,即.

.

,,

所以上遞增,∴.

時(shí),,即,

所以上遞減;

時(shí),,即,

上遞增.

所以時(shí),取得極小值,也是最小值,

,∴a≤1.

所以a的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)今世界科技迅猛發(fā)展,信息日新月異.為增強(qiáng)全民科技意識(shí),提高公眾科學(xué)素養(yǎng),某市圖書(shū)館開(kāi)展了以“親近科技、暢想未來(lái)”為主題的系列活動(dòng),并對(duì)不同年齡借閱者對(duì)科技類(lèi)圖書(shū)的情況進(jìn)行了調(diào)查.該圖書(shū)館從只借閱了一本圖書(shū)的借閱者中隨機(jī)抽取100名,數(shù)據(jù)統(tǒng)計(jì)如表:

借閱科技類(lèi)圖書(shū)(人)

借閱非科技類(lèi)圖書(shū)(人)

年齡不超過(guò)50

20

25

年齡大于50

10

45

1)是否有99%的把握認(rèn)為年齡與借閱科技類(lèi)圖書(shū)有關(guān)?

2)該圖書(shū)館為了鼓勵(lì)市民借閱科技類(lèi)圖書(shū),規(guī)定市民每借閱一本科技類(lèi)圖書(shū)獎(jiǎng)勵(lì)積分2分,每借閱一本非科技類(lèi)圖書(shū)獎(jiǎng)勵(lì)積分1分,積分累計(jì)一定數(shù)量可以用積分換購(gòu)自己喜愛(ài)的圖書(shū).用表中的樣本頻率作為概率的估計(jì)值.

i)現(xiàn)有3名借閱者每人借閱一本圖書(shū),記此3人增加的積分總和為隨機(jī)變量ξ,求ξ的分布列和數(shù)學(xué)期望;

ii)現(xiàn)從只借閱一本圖書(shū)的借閱者中選取16人,則借閱科技類(lèi)圖書(shū)最有可能的人數(shù)是多少?

附:K2,其中na+b+c+d

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫(xiě)出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)是曲線上的動(dòng)點(diǎn),求點(diǎn)到曲線的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的對(duì)稱(chēng)中心為原點(diǎn),焦點(diǎn)在軸上,焦距為,點(diǎn)在該橢圓上.

(1)求橢圓的方程;

(2)直線與橢圓交于兩點(diǎn),點(diǎn)位于第一象限,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),滿(mǎn)足,問(wèn)直線的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓周率π是數(shù)學(xué)中一個(gè)非常重要的數(shù),歷史上許多中外數(shù)學(xué)家利用各種辦法對(duì)π進(jìn)行了估算.現(xiàn)利用下列實(shí)驗(yàn)我們也可對(duì)圓周率進(jìn)行估算.假設(shè)某校共有學(xué)生N人,讓每人隨機(jī)寫(xiě)出一對(duì)小于1的正實(shí)數(shù)a,b,再統(tǒng)計(jì)出a,b,1能構(gòu)造銳角三角形的人數(shù)M,利用所學(xué)的有關(guān)知識(shí),則可估計(jì)出π的值是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線y2=4x的焦點(diǎn)的直線l與拋物線交于AB兩點(diǎn),設(shè)點(diǎn)M3,0.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】劉徽(約公元225—295年),魏晉期間偉大的數(shù)學(xué)家,中國(guó)古典數(shù)學(xué)理論的奠基人之一.他在割圓術(shù)中提出的割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體,而無(wú)所失矣.這可視為中國(guó)古代極限觀念的佳作.割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正邊形等分成個(gè)等腰三角形(如圖所示),當(dāng)變得很大時(shí),這個(gè)等腰三角形的面積之和近似等于圓的面積.運(yùn)用割圓術(shù)的思想,估計(jì)的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】著名物理學(xué)家李政道說(shuō):科學(xué)和藝術(shù)是不可分割的”.音樂(lè)中使用的樂(lè)音在高度上不是任意定的,它們是按照嚴(yán)格的數(shù)學(xué)方法確定的.我國(guó)明代的數(shù)學(xué)家、音樂(lè)理論家朱載填創(chuàng)立了十二平均律是第一個(gè)利用數(shù)學(xué)使音律公式化的人.十二平均律的生律法是精確規(guī)定八度的比例,把八度分成13個(gè)半音,使相鄰兩個(gè)半音之間的頻率比是常數(shù),如下表所示,其中表示這些半音的頻率,它們滿(mǎn)足.若某一半音與的頻率之比為,則該半音為(

頻率

半音

C

D

E

F

G

A

B

C(八度)

A.B.GC.D.A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,直線的參數(shù)方程為t為參數(shù)),,點(diǎn)A為直線與曲線C在第二象限的交點(diǎn),過(guò)O點(diǎn)的直線與直線互相垂直,點(diǎn)B為直線與曲線C在第三象限的交點(diǎn).

1)寫(xiě)出曲線C的直角坐標(biāo)方程及直線的普通方程;

2)若,求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案