將下列說法中,正確說法序號(hào)寫在后面的橫線上
 

①至少有一個(gè)整數(shù)x,能使5x-1是整數(shù);
②對(duì)于?x∈R,x2-4x+4≥0;
③a=b是|a|=|b|的充要條件;
④若命題p:y=sinx為周期函數(shù);q:y=sinx為偶函數(shù),則p∨q為真命題.
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:①例如取x=2,則5×2-1=9是整數(shù),即可判斷出;
②由于?x∈R,x2-4x+4=(x-2)2≥0,即可判斷出;
③a=b⇒|a|=|b|,反之不成立,即可判斷出;
④若命題p:y=sinx為周期函數(shù),是真命題;q:y=sinx為偶函數(shù),是假命題,即可判斷出p∨q的真假.
解答: 解:①至少有一個(gè)整數(shù)x,能使5x-1是整數(shù),正確,例如取x=2,則5×2-1=9是整數(shù);
②對(duì)于?x∈R,x2-4x+4=(x-2)2≥0,正確;
③a=b⇒|a|=|b|,反之不成立,因此a=b是|a|=|b|的充分不必要條件;
④若命題p:y=sinx為周期函數(shù),是真命題;q:y=sinx為偶函數(shù),是假命題,可得p∨q為真命題.正確.
綜上可知:只有①②④正確.
故答案為:①②④.
點(diǎn)評(píng):本題考查了簡(jiǎn)易邏輯的有關(guān)知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4x+3y<12
x-y>-1
y≥0
表示的平面區(qū)域內(nèi)整點(diǎn)的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下命題:
①若“p且q”為假命題,則p,q均為假命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
④“a≥5”是“?x∈[1,2],x2-a≤0恒成立”的充要條件.
其中所有正確的命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論正確的是
 
(寫出所有正確結(jié)論的序號(hào))
(1)常數(shù)列既是等差數(shù)列,又是等比數(shù)列;
(2)若直角三角形的三邊a、b、c成等差數(shù)列,則a、b、c之比為3:4:5;
(3)若三角形ABC的三內(nèi)角A、B、C成等差數(shù)列,則B=60°;
(4)若數(shù)列{an}的前n項(xiàng)和為Sn=n2+n+1,則{an}的通項(xiàng)公式an=2n+1;
(5)若數(shù)列{an}的前n項(xiàng)和為Sn=3n-1,則{an}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把甲、乙、丙、丁、戊5人分配去參加三項(xiàng)不同的活動(dòng),其中活動(dòng)一和活動(dòng)二各要2人,活動(dòng)三要1人,且甲,乙兩人不能參加同一活動(dòng),則一共有
 
種不同分配方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若a,b∈R+,a≠b,則a3+b3>a2b+ab2;
②若a,b,c∈R,則a2+b2+c2≥ab+bc+ca;
③若a>0,b>0,a+b=2,則
a
+
b
2
;
④若
x+y>4
xy>4
,則
x>2
y>2
;
⑤函數(shù)y=
x2+2014
x2+2013
的最小值等于2.
其中正確命題的個(gè)數(shù)為( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷錯(cuò)誤的是( 。
A、命題“?x∈R,2x>0”的否定是“?x0∈R,2x0≤0
B、命題“若xy=0,則x=0”的否命題為“若xy≠0,則x≠0”
C、函數(shù)y=2x-3+1的圖象恒過定點(diǎn)A(3,2)
D、“sinα=
1
2
”是“α=
π
6
”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題是( 。
A、若a>b>0,a>c,則a2>bc
B、若a>b>c,則
a
c
b
c
C、若a>b,n∈N*,則an>bn
D、若a>b>0,則1na<1nb

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P(x,y)到F(0,1)的距離比到直線y=-2的距離小1.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡W的方程;
(Ⅱ)過點(diǎn)E(0,-4)的直線與軌跡W交于兩點(diǎn)A,B,點(diǎn)D是點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn),點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為A1,證明A1,D,B三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊(cè)答案