【題目】荊州市政府為促進(jìn)淡水魚(yú)養(yǎng)殖業(yè)的發(fā)展,將價(jià)格控制在適當(dāng)?shù)姆秶鷥?nèi),決定對(duì)淡水魚(yú)養(yǎng)殖提供政府補(bǔ)貼.設(shè)淡水魚(yú)的市場(chǎng)價(jià)格為元/千克,政府補(bǔ)貼為元/千克.根據(jù)市場(chǎng)調(diào)查,當(dāng)時(shí),淡水魚(yú)的市場(chǎng)日供應(yīng)量千克與市場(chǎng)日需求量千克近似滿(mǎn)足關(guān)系;.當(dāng)市場(chǎng)日供應(yīng)量與市場(chǎng)日需求量相等時(shí)的市場(chǎng)價(jià)格稱(chēng)為市場(chǎng)平衡價(jià)格.
(1)將市場(chǎng)平衡價(jià)格表示為政府補(bǔ)貼的函數(shù),并求其定義域;
(2)為使市場(chǎng)平衡價(jià)格不高于10元/千克,政府補(bǔ)貼至少為每千克多少元?
【答案】(1)(1),定義域?yàn)?/span>;(2)至少為每千克1元
【解析】試題分析:(1)根據(jù)市場(chǎng)日供應(yīng)量與市場(chǎng)日需求量相等,即得到方程,當(dāng)根的判別式時(shí),方程有解,求出解可得函數(shù)關(guān)系式,然后,原題以及二次根式自變量取值范圍得的另一范圍,聯(lián)立得兩個(gè)不等式組,求出解集可得自變量取值范圍即可;(2)根據(jù)價(jià)格不高于元,得,解不等式求出的取值范圍即可.
試題解析:(1)依題設(shè)有,化簡(jiǎn)得,當(dāng)判別式時(shí),可得,故所求的函數(shù)關(guān)系式為,函數(shù)的定義域?yàn)?/span>.
(2)為使,應(yīng)有化簡(jiǎn)得,解得或,由知,從而政府補(bǔ)貼至少為每千克1元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=﹣ sin(2x+ )+2,求:
(1)f(x)的最小正周期及對(duì)稱(chēng)軸方程;
(2)f(x)的單調(diào)遞增區(qū)間;
(3)若方程f(x)﹣m+1=0在x∈[0, ]上有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年“十一”期間,高速公路車(chē)輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車(chē)中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢(xún)問(wèn)調(diào)查,將他們?cè)谀扯胃咚俟返能?chē)速()分成六段: , , , , , ,后得到如圖的頻率分布直方圖.
(1)求這40輛小型車(chē)輛車(chē)速的眾數(shù)和中位數(shù)的估計(jì)值;
(2)若從車(chē)速在的車(chē)輛中任抽取2輛,求車(chē)速在的車(chē)輛恰有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=bax(a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)A(1,8),B(3,32)
(1)試求a,b的值;
(2)若不等式( )x+( )x﹣m≥0在x∈(﹣∞,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角三角形中, , , , 為線段上一點(diǎn),且,沿邊上的中線將折起到的位置.
(Ⅰ)求證: ;
(Ⅱ)當(dāng)平面平面時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x2﹣2),若f(2)=1
(1)求a的值;
(2)求f(3 )的值;
(3)解不等式f(x)<f(x+2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), , ,
(1)求證:函數(shù)在點(diǎn)處的切線恒過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo);
(2)若在區(qū)間上恒成立,求的取值范圍;
(3)當(dāng)時(shí),求證:在區(qū)間上,滿(mǎn)足恒成立的函數(shù)有無(wú)窮多個(gè).(記)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個(gè)不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com