(本題滿分12分)
已知a∈R,函數(shù)f(x)=4x3-2ax+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)0≤x≤1時(shí),f(x)+|2-a|>0.
(1)函數(shù)f(x)的單調(diào)遞增區(qū)間為和,
單調(diào)遞減區(qū)間為.(2)見(jiàn)解析。
解析試題分析:(1)根據(jù)函數(shù)的導(dǎo)數(shù)符號(hào)與函數(shù)單調(diào)性的關(guān)系來(lái)判定求解其單調(diào)區(qū)間。
(2)要證明不等式恒成立問(wèn)題,那么要轉(zhuǎn)化為函數(shù)的最值問(wèn)題來(lái)處理即可或者構(gòu)造函數(shù)求解函數(shù)的 最小值大于零得到。
解:
(1)由題意得f′(x)=12x2-2a.
當(dāng)a≤0時(shí),f′(x)≥0恒成立,此時(shí)f(x)的單調(diào)遞增區(qū)間為(-∞,+∞).
當(dāng)a>0 時(shí),f′(x)=12,此時(shí)
函數(shù)f(x)的單調(diào)遞增區(qū)間為和,
單調(diào)遞減區(qū)間為.
(2)由于0≤x≤1,故
當(dāng)a≤2時(shí),f(x)+|a-2|=4x3-2ax+2≥4x3-4x+2.
當(dāng)a>2時(shí),f(x)+|a-2|=4x3+2a(1-x)-2≥4x3+4(1-x)-2=4x3-4x+2.
設(shè)g(x)=2x3-2x+1,0≤x≤1,則g′(x)=6x2-2=6,于是
所以g(x)min=g=1->0.
x
0 - 0 + 1 減函數(shù) 極小值 增函數(shù) 1
所以當(dāng)0≤x≤1時(shí),2x3-2x+1>0.
故f(x)+|a-2|≥4x3-4x+2>0.
考點(diǎn):本試題主要考查了導(dǎo)數(shù)在研究函數(shù)問(wèn)題中的運(yùn)用。
點(diǎn)評(píng):對(duì)于含有參數(shù)的二次不等式問(wèn)題的求解是解決導(dǎo)數(shù)中常見(jiàn)的非常重要的,注意對(duì)于開(kāi)口和判別式的情況進(jìn)行分類(lèi)討論得到結(jié)論。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分10分) 如圖,由y=0,x=8,y=x2圍成的曲邊三角形,在曲線弧OB上求一點(diǎn)M,使得過(guò)M所作的y=x2的切線PQ與OA,AB圍成的三角形PQA面積最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)的圖像與直線相切于點(diǎn).
(Ⅰ)求的值;
(Ⅱ)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是函數(shù)的一個(gè)極值點(diǎn)。
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題16分)已知函數(shù)滿足滿足;
(1)求的解析式及單調(diào)區(qū)間;
(2)若,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知函數(shù)f(x)=x3+ax2+(a+6)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過(guò)原點(diǎn),且在原點(diǎn)處的切線斜率是3,求a,b的值;
(2)若f(x)為R上的單調(diào)遞增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知函數(shù)(),.
(Ⅰ)當(dāng)時(shí),解關(guān)于的不等式:;
(Ⅱ)當(dāng)時(shí),記,過(guò)點(diǎn)是否存在函數(shù)圖象的切線?若存在,有多少條?若不存在,說(shuō)明理由;
(Ⅲ)若是使恒成立的最小值,對(duì)任意,
試比較與的大小(常數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)當(dāng)時(shí), 若有個(gè)零點(diǎn), 求的取值范圍;
(2)對(duì)任意, 當(dāng)時(shí)恒有, 求的最大值, 并求此時(shí)的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知函數(shù).
(Ⅰ)求函數(shù)的極大值;
(Ⅱ)若對(duì)滿足的任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍(這里是自然對(duì)數(shù)的底數(shù));
(Ⅲ)求證:對(duì)任意正數(shù)、、、,恒有
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com