(本小題滿分12分)
設(shè)函數(shù)的圖像與直線相切于點(diǎn).
(Ⅰ)求的值;
(Ⅱ)討論函數(shù)的單調(diào)性.
(Ⅰ).
(Ⅱ)故當(dāng)x(, -1)時,f(x)是增函數(shù),當(dāng) x(3,)時,f(x)也是增函數(shù),
當(dāng)x(-1 ,3)時,f(x)是減函數(shù).
解析試題分析:(I)由于和函數(shù)f(x)過點(diǎn)(1,-11)可建立關(guān)于a,b的方程求出a,b的值.
(II)根據(jù)可求得函數(shù)f(x)的單調(diào)遞增(減)區(qū)間.
(Ⅰ)求導(dǎo)得. -------------------2分
由于 的圖像與直線相切于點(diǎn),
所以, -------------- 4分
即:
1-3a+3b = -11 解得: . -------------------- 6分
3-6a+3b=-12
(Ⅱ)由得:
------------ 8分
令f′(x)>0,解得 x<-1或x>3;
又令f′(x)< 0,解得 -1<x<3. ------ 10分
故當(dāng)x(, -1)時,f(x)是增函數(shù),當(dāng) x(3,)時,f(x)也是增函數(shù),
當(dāng)x(-1 ,3)時,f(x)是減函數(shù). --------------------- 12分
考點(diǎn):導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)求函數(shù)的極大值.
點(diǎn)評:在某點(diǎn)處的導(dǎo)數(shù)就是在此點(diǎn)處的切線的斜率,利用導(dǎo)數(shù)大(。┝憬獠坏仁娇傻煤瘮(shù)的單調(diào)遞增(減)區(qū)間.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(a為實常數(shù)).
(1)若,求證:函數(shù)在(1,+.∞)上是增函數(shù);
(2)求函數(shù)在[1,e]上的最小值及相應(yīng)的值;
(3)若存在,使得成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù),函數(shù)的最小值為,
(1)當(dāng)時,求
(2)是否存在實數(shù)同時滿足下列條件:①;②當(dāng)的定義域為 時,值域為?若存在,求出的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù).
(Ⅰ)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個數(shù);
(Ⅱ)若函數(shù)在處取得極值,對,恒成立,
求實數(shù)的取值范圍;
(Ⅲ)當(dāng)且時,試比較的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù),曲線過點(diǎn),且在點(diǎn)處的切線斜率為2.
(1)求的值;
(2)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知a∈R,函數(shù)f(x)=4x3-2ax+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)0≤x≤1時,f(x)+|2-a|>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(Ⅰ) 當(dāng)時,求函數(shù)的極值;
(Ⅱ)當(dāng)時,討論函數(shù)的單調(diào)性. (Ⅲ)(理科)若對任意及任意,恒有 成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com