【題目】已知函數(shù),,其中為實(shí)數(shù)

1是否存在,使得?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由;

2若集合中恰有5個(gè)元素,求實(shí)數(shù)的取值范圍

【答案】1時(shí),2

【解析】

試題分析:1,,解得,所以時(shí),;2相異實(shí)根時(shí),

,解得,當(dāng)時(shí),, 解,不符合題意;當(dāng)時(shí),,結(jié)合函數(shù)的單調(diào)性和極值可知 解,不符合題意;當(dāng)時(shí),,結(jié)合函數(shù)的單調(diào)性和極值可知解時(shí)

試題解析:

1

時(shí),

2有2相異實(shí)根時(shí),

,,有3個(gè)相異實(shí)根時(shí),

當(dāng)時(shí), =0有1解;

當(dāng)時(shí),,上增,上減,上增,極大值有1解;

當(dāng)時(shí),,上增,上減,上增,極小值,要使有3解,只須,

下面用反證法證明時(shí),5個(gè)根相異假設(shè)

兩式相減得:

代入得0-1=0矛盾;若代入,這與矛盾所以假設(shè)不成立,即5個(gè)根相異綜上,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的方程為:,其中:,且為常數(shù).

(1)判斷曲線的形狀,并說明理由;

(2)設(shè)曲線分別與軸,軸交于點(diǎn)(不同于坐標(biāo)原點(diǎn)),試判斷的面積是否為定值?并證明你的判斷;

(3)設(shè)直線曲線交于不同的兩點(diǎn),為坐標(biāo)原點(diǎn)),求曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1設(shè)是函數(shù)的極值點(diǎn),求并討論的單調(diào)性;

2設(shè)是函數(shù)的極值點(diǎn),且恒成立,求的取值范圍其中常數(shù)滿足).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1是四棱錐的直觀圖,其正(主)視圖和側(cè)(左)視圖均為直角三角形,俯視圖外框?yàn)榫匦,相關(guān)數(shù)據(jù)如圖2所示.

(1)設(shè)中點(diǎn)為,在直線上找一點(diǎn),使得平面,并說明理由;

(2)若二面角的平面角的余弦值為,求四棱錐的外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線 的參數(shù)方程為為參數(shù)).

(1)直線且與曲線相切,求直線的極坐標(biāo)方程;

(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,求曲線上的點(diǎn)到點(diǎn)的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn), 極軸為軸的正半軸, 建立平面直角坐標(biāo)系, 直線的參數(shù)方程為為參數(shù)).

1判斷直線與曲線的位置關(guān)系, 并說明理由;

2若直線與曲線相交于兩點(diǎn), ,求直線的斜率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F并且經(jīng)過點(diǎn)A(1,﹣2).

(1)求拋物線C的方程;

(2)過F作傾斜角為45°的直線l,交拋物線C于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),求OMN的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某地高一學(xué)生的體能狀況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長(zhǎng)方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.

(1)第二小組的頻率是多少?樣本容量是多少?

(2)若次數(shù)在110以上為達(dá)標(biāo),試估計(jì)全體高一學(xué)生的達(dá)標(biāo)率為多少?

(3)通過該統(tǒng)計(jì)圖,可以估計(jì)該地學(xué)生跳繩次數(shù)的眾數(shù)是______,中位數(shù)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃在今年內(nèi)同時(shí)出售變頻空調(diào)機(jī)和智能洗衣機(jī),由于這兩種產(chǎn)品的市場(chǎng)需求量非常大,有多少就能銷售多少,因此該公司要根據(jù)實(shí)際情況(如資金、勞動(dòng)力)確定產(chǎn)品的月供應(yīng)量,以使得總利潤達(dá)到最大.已知對(duì)這兩種產(chǎn)品有直接限制的因素是資金和勞動(dòng)力,經(jīng)調(diào)查,得到關(guān)于這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:

資金

每臺(tái)產(chǎn)品所需資金(百元)

月資金供應(yīng)量

(百元)

空調(diào)機(jī)

洗衣機(jī)

成本

30

20

300

勞動(dòng)力(工資)

5

10

110

每臺(tái)產(chǎn)品利潤

6

8

試問:怎樣確定兩種貨物的月供應(yīng)量,才能使總利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案