【題目】某公司計(jì)劃在今年內(nèi)同時(shí)出售變頻空調(diào)機(jī)和智能洗衣機(jī),由于這兩種產(chǎn)品的市場(chǎng)需求量非常大,有多少就能銷售多少,因此該公司要根據(jù)實(shí)際情況(如資金、勞動(dòng)力)確定產(chǎn)品的月供應(yīng)量,以使得總利潤(rùn)達(dá)到最大.已知對(duì)這兩種產(chǎn)品有直接限制的因素是資金和勞動(dòng)力,經(jīng)調(diào)查,得到關(guān)于這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:
資金 | 每臺(tái)產(chǎn)品所需資金(百元) | 月資金供應(yīng)量 (百元) | |
空調(diào)機(jī) | 洗衣機(jī) | ||
成本 | 30 | 20 | 300 |
勞動(dòng)力(工資) | 5 | 10 | 110 |
每臺(tái)產(chǎn)品利潤(rùn) | 6 | 8 |
試問(wèn):怎樣確定兩種貨物的月供應(yīng)量,才能使總利潤(rùn)最大?最大利潤(rùn)是多少?
【答案】當(dāng)月供應(yīng)空調(diào)機(jī)4臺(tái),洗衣機(jī)9臺(tái)時(shí),可獲最大利潤(rùn)9600元
【解析】設(shè)空調(diào)機(jī)、洗衣機(jī)的月供應(yīng)量分別是,臺(tái),總利潤(rùn)是百元,根據(jù)題意可得線性約束條件為即
目標(biāo)函數(shù)為.
作出二元一次不等式組所表示的平面區(qū)域,即可行域如圖所示,
將變形為,這是斜率為、隨變化的一組平行直線,是直線在軸上的截距,當(dāng)取最大值時(shí),的值最大,當(dāng)然直線要與可行域相交,由圖可得,當(dāng)直線經(jīng)過(guò)可行域上的點(diǎn)時(shí),截距最大,即最大.
解方程組得的坐標(biāo)為
∴(百元).
答:當(dāng)月供應(yīng)空調(diào)機(jī)4臺(tái),洗衣機(jī)9臺(tái)時(shí),可獲最大利潤(rùn)9600元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,其中為實(shí)數(shù).
(1)是否存在,使得?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由;
(2)若集合中恰有5個(gè)元素,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是定義在上的函數(shù),如果存在點(diǎn),對(duì)函數(shù)的圖象上任意點(diǎn),關(guān)于點(diǎn)的對(duì)稱點(diǎn)也在函數(shù)的圖象上,則稱函數(shù)關(guān)于點(diǎn)對(duì)稱,稱為函數(shù)的一個(gè)對(duì)稱點(diǎn),對(duì)于定義在上的函數(shù),可以證明點(diǎn)是圖象的一個(gè)對(duì)稱點(diǎn)的充要條件是,.
(1)求函數(shù)圖象的一個(gè)對(duì)稱點(diǎn);
(2)函數(shù)的圖象是否有對(duì)稱點(diǎn)?若存在則求之,否則說(shuō)明理由;
(3)函數(shù)的圖象是否有對(duì)稱點(diǎn)?若存在則求之,否則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有30名男職員和20名女職員,公司進(jìn)行了一次全員參與的職業(yè)能力測(cè)試,現(xiàn)隨機(jī)詢問(wèn)了該公司5名男職員和5名女職員在測(cè)試中的成績(jī)(滿分為30分),可知這5名男職員的測(cè)試成績(jī)分別為16,24,18,
22,20,5名女職員的測(cè)試成績(jī)分別為18,23,23,18,23,則下列說(shuō)法一定正確的是( )
A. 這種抽樣方法是分層抽樣
B. 這種抽樣方法是系統(tǒng)抽樣
C. 這5名男職員的測(cè)試成績(jī)的方差大于這5名女職員的測(cè)試成績(jī)的方差
D. 該測(cè)試中公司男職員的測(cè)試成績(jī)的平均數(shù)小于女職員的測(cè)試成績(jī)的平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)若曲線在點(diǎn)處切線的斜率為3,且對(duì)任意都成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)視覺(jué)和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)
幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 30 | 20 | 50 |
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺(jué)和空間能力與性別有關(guān)?
(2)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
附表及公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,貨輪在海上以35n mile/h的速度沿方位角(從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為的方向航行.為了確定船位,在B點(diǎn)處觀測(cè)到燈塔A的方位角為.半小時(shí)后,貨輪到達(dá)C點(diǎn)處,觀測(cè)到燈塔A的方位角為.求此時(shí)貨輪與燈塔之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)記,那么當(dāng)時(shí),是否存在區(qū)間使得函數(shù)在區(qū)間上的值域恰好為?若存在,請(qǐng)求出區(qū)間;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一座大橋既是交通擁擠地段,又是事故多發(fā)地段,為了保證安全,交通部門規(guī)定:大橋上的車距與車速和車長(zhǎng)的關(guān)系滿足為正的常數(shù)).假定車身長(zhǎng)為,當(dāng)車速為時(shí),車距為個(gè)車身長(zhǎng).
(1)寫出車距關(guān)于車速的函數(shù)關(guān)系式;
(2)應(yīng)規(guī)定怎樣的車速,才能使大橋上每小時(shí)通過(guò)的車輛最多?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com