【題目】已知是各項均為正數(shù)的無窮數(shù)列,數(shù)列滿足(n),其中常數(shù)k為正整數(shù).
(1)設(shè)數(shù)列前n項的積,當(dāng)k=2時,求數(shù)列的通項公式;
(2)若是首項為1,公差d為整數(shù)的等差數(shù)列,且=4,求數(shù)列的前2020項的和;
(3)若是等比數(shù)列,且對任意的n,,其中k≥2,試問:是等比數(shù)列嗎?請證明你的結(jié)論.
【答案】(1);(2)(3)數(shù)列是等比數(shù)列.證明見解析
【解析】
(1)先求出,即得數(shù)列的通項公式;
(2)通過分析得到d=1,得到,再求出k=1,即得,再利用裂項相消法求數(shù)列的前2020項的和;
(3)設(shè)公比為q2,則對任意n,,由已知得到,證明得到,即得數(shù)列是等比數(shù)列.
解:(1)因為,所以,
兩式相除,可得,
當(dāng)n=1時,,符合上式,所以,
當(dāng)k=2時,;
(2)因為,且,
所以,,
所以,
因為是各項均為正數(shù)的無窮數(shù)列,是首項為1,公差d為整數(shù)的等差數(shù)列,
所以d,k均為正整數(shù),所以,所以,
所以,解得d≤1,所以d=1,即.
所以,即,解得k=1,
所以,則,
記的前n項和為,
則,
所以;
(3)因為成等比數(shù)列,設(shè)公比為q2,則對任意n,,
因為,且,所以,所以,
因為,所以,
所以數(shù)列是等比數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為2,且長軸長是短軸長的倍.
(1)求橢圓的標準方程;
(2)若過橢圓左焦點的直線交橢圓于兩點,點在軸非負半軸上,且點到坐標原點的距離為2,求取得最大值時的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點O為極點,x軸正半軸為極軸,建立極坐標系,點,()在曲線C:上,直線l過點且與垂直,垂足為P.
(Ⅰ)當(dāng)時,求在直角坐標系下點P坐標和l的方程;
(Ⅱ)當(dāng)M在C上運動且P在線段上時,求點P在極坐標系下的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為,右頂點到左焦點的距離為,、分別為橢圓的左、右兩個焦點.
(1)求橢圓的方程;
(2)已知橢圓的切線(與橢圓有唯一交點)的方程為,切線與直線和直線分別交于點、,求證:為定值,并求此定值;
(3)設(shè)矩形的四條邊所在直線都和橢圓相切(即每條邊所在直線與橢圓有唯一交點),求矩形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市對一項惠民市政工程滿意程度(分值:分)進行網(wǎng)上調(diào)查,有2000位市民參加了投票,經(jīng)統(tǒng)計,得到如下頻率分布直方圖(部分圖):
現(xiàn)用分層抽樣的方法從所有參與網(wǎng)上投票的市民中隨機抽取位市民召開座談會,其中滿意程度在的有5人.
(1)求的值,并填寫下表(2000位參與投票分數(shù)和人數(shù)分布統(tǒng)計);
滿意程度(分數(shù)) | |||||
人數(shù) |
(2)求市民投票滿意程度的平均分(各分數(shù)段取中點值);
(3)若滿意程度在的5人中恰有2位為女性,座談會將從這5位市民中任選兩位發(fā)言,求男性甲或女性乙被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,且過點.
(1)求橢圓的標準方程;
(2)若直線與拋物線相交于兩點,與橢圓相交于兩點,(為坐標原點),為拋物線的焦點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·衢州調(diào)研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點M是頂點P在底面ABCD的射影,N是PC的中點.
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,是邊長為2的正三角形,是等腰直角三角形,.
(I)證明:平面平面ABC;
(II)點E在BD上,若平面ACE把三棱錐分成體積相等的兩部分,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,已知點,的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求的普通方程和的直角坐標方程;
(2)設(shè)曲線與曲線相交于,兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com