[番茄花園1] 本題共有2個(gè)小題,第1小題滿分5分,第2小題滿分8分.

如圖所示,為了制作一個(gè)圓柱形燈籠,先要制作4個(gè)全等的矩形骨架,總計(jì)耗用9.6米鐵絲,骨架把圓柱底面8等份,再用S平方米塑料片制成圓柱的側(cè)面和下底面(不安裝上底面).

(1)當(dāng)圓柱底面半徑取何值時(shí),取得最大值?并求出該

最大值(結(jié)果精確到0.01平方米);

(2)在燈籠內(nèi),以矩形骨架的頂點(diǎn)為點(diǎn),安裝一些霓虹燈,當(dāng)燈籠的底面半徑為0.3米時(shí),求圖中兩根直線所在異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示)

 


 [番茄花園1]21、

【答案】

 [番茄花園1] 解析:(1) 設(shè)圓柱形燈籠的母線長(zhǎng)為l,則l=1.2-2r(0<r<0.6),S=-3p(r-0.4)2+0.48p,

所以當(dāng)r=0.4時(shí),S取得最大值約為1.51平方米;

(2) 當(dāng)r=0.3時(shí),l=0.6,建立空間直角坐標(biāo)系,可得,

設(shè)向量的夾角為q,則

所以A1B3、A3B5所在異面直線所成角的大小為

 


 [番茄花園1]21、

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(浙江卷)解析版(理) 題型:解答題

 [番茄花園1]  (本題滿分l4分)如圖,一個(gè)小球從M處投入,通過(guò)管道自

上而下落ABC。已知小球從每個(gè)叉口落入左右兩個(gè)

 管道的可能性是相等的.

某商家按上述投球方式進(jìn)行促銷活動(dòng),若投入的小球落

到A,B,C,則分別設(shè)為l,2,3等獎(jiǎng).

(I)已知獲得l,2,3等獎(jiǎng)的折扣率分別為50%,70%,

90%.記隨變量為獲得k(k=1,2,3)等獎(jiǎng)的折扣

率,求隨機(jī)變量的分布列及期望

(II)若有3人次(投入l球?yàn)閘人次)參加促銷活動(dòng),記隨機(jī)

變量為獲得1等獎(jiǎng)或2等獎(jiǎng)的人次,求

 


 [番茄花園1]1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(浙江卷)解析版(理) 題型:解答題

 [番茄花園1]  (本題滿分l4分)在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,已知

      (I)求sinC的值;

(Ⅱ)當(dāng)a=2, 2sinA=sinC時(shí),求b及c的長(zhǎng).

 

 


 [番茄花園1]1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(上海秋季)解析版(理) 題型:解答題

 [番茄花園1] 本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分10分。

若實(shí)數(shù)、、滿足,則稱遠(yuǎn)離.

(1)若比1遠(yuǎn)離0,求的取值范圍;

(2)對(duì)任意兩個(gè)不相等的正數(shù)、,證明:遠(yuǎn)離;

(3)已知函數(shù)的定義域.任取等于中遠(yuǎn)離0的那個(gè)值.寫出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

23本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.

已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).

(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);

(2)設(shè)直線交橢圓兩點(diǎn),交直線于點(diǎn).若,證明:的中點(diǎn);

(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)、滿足,寫出求作點(diǎn)、的步驟,并求出使、存在的θ的取值范圍.

 

 

 

 


 [番茄花園1]22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(上海秋季)解析版(理) 題型:解答題

 [番茄花園1] 本題共有2個(gè)小題,第一個(gè)小題滿分5分,第2個(gè)小題滿分8分。

已知數(shù)列的前項(xiàng)和為,且

(1)證明:是等比數(shù)列;

(2)求數(shù)列的通項(xiàng)公式,并求出n為何值時(shí),取得最小值,并說(shuō)明理由。

同理可得,當(dāng)n≤15時(shí),數(shù)列{Sn}單調(diào)遞減;故當(dāng)n=15時(shí),Sn取得最小值.

 


 [番茄花園1]20.

查看答案和解析>>

同步練習(xí)冊(cè)答案