【題目】若數(shù)列滿足,且,則
①數(shù)列是等比數(shù)列;
②滿足不等式:
③若函數(shù)在R上單調(diào)遞減,則數(shù)列是單調(diào)遞減數(shù)列;
④存在數(shù)列中的連續(xù)三項(xiàng),能組成三角形的三條邊;
⑤滿足等式:.
正確的序號是________
【答案】②④⑤
【解析】
利用所給遞推公式求出的通項(xiàng)公式,由證明數(shù)列不是等比數(shù)列,根據(jù)的單調(diào)性求出范圍證明②正確,根據(jù)復(fù)合函數(shù)的增減性判斷規(guī)則說明③錯(cuò)誤,舉出例子證明④正確,利用裂項(xiàng)相消法求和證明⑤正確.
且,
數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,則,
.
①設(shè),則,因?yàn)?/span>,所以,因此數(shù)列不是等比數(shù)列;
②,因?yàn)?/span>在上單調(diào)遞增,所以,②正確;
③因?yàn)槿魯?shù)列是單調(diào)遞減的數(shù)列,所以若函數(shù)在R上單調(diào)遞減,則數(shù)列是單調(diào)遞增數(shù)列;
④即可構(gòu)成三角形的三邊,所以④正確;
⑤因?yàn)?/span>,所以,⑤正確.
故答案為:②④⑤
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過其焦點(diǎn)的直線與拋物線相交于、兩點(diǎn),滿足.
(1)求拋物線的方程;
(2)已知點(diǎn)的坐標(biāo)為,記直線、的斜率分別為,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓上的點(diǎn)到右焦點(diǎn)的距離的最大值為3.
(1)求橢圓的方程;
(2)若過橢圓的右焦點(diǎn)作傾斜角不為零的直線與橢圓交于兩點(diǎn),設(shè)線段的垂直平分線在軸上的截距為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=AB.
(1)證明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的命題是( 。
A.若a>b,c>d,則ac>bdB.若,則 a<b
C.若b>c,則|a|b≥|a|cD.若a>b,c>d,則a﹣c>b﹣d
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】阿波羅尼斯(約公元前年)證明過這樣一個(gè)命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點(diǎn)、間的距離為,動點(diǎn)滿足,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)令,求證:有唯一的極值點(diǎn);
(2)若點(diǎn)為函數(shù)上的任意一點(diǎn),點(diǎn)為函數(shù)上的任意一點(diǎn),求、兩點(diǎn)之間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,右焦點(diǎn),點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)為橢圓上一點(diǎn),過焦點(diǎn)的弦分別為,設(shè),,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道,地球上的水資源有限,愛護(hù)地球、節(jié)約用水是我們每個(gè)人的義務(wù)與責(zé)任.某市政府為了對自來水的使用進(jìn)行科學(xué)管理,節(jié)約水資源,計(jì)劃確定一個(gè)家庭年用水量的標(biāo)準(zhǔn).為此,對全市家庭日常用水量的情況進(jìn)行抽樣抽查,獲得了個(gè)家庭某年的用水量(單位:立方米),統(tǒng)計(jì)結(jié)果如下表及圖所示.
分組 | 頻數(shù) | 頻率 |
25 | ||
0.19 | ||
50 | ||
0.23 | ||
0.18 | ||
5 |
(1)分別求出,的值;
(2)若以各組區(qū)間中點(diǎn)值代表該組的取值,試估計(jì)全市家庭年均用水量;
(3)從樣本中年用水量在(單位:立方米)的5個(gè)家庭中任選3個(gè),作進(jìn)一步的跟蹤研究,求年用水量最多的家庭被選中的概率(5個(gè)家庭的年用水量都不相等).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com