【題目】某化工廠擬建一個下部為圓柱,上部為半球的容器(如圖,圓柱高為h,半徑為r,不計厚度,單位:米),按計劃容積為72π立方米,且h≥2r,假設(shè)其建造費用僅與表面積有關(guān)(圓柱底部不計),已知圓柱部分每平方米的費用為2千元,半球部分每平方米4千元,設(shè)該容器的建造費用為y千元.

(Ⅰ)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
(Ⅱ)求建造費用最小時的r.

【答案】解:(Ⅰ)由容積為72π立方米,得

,解得0<r≤3

又圓柱的側(cè)面積為 ,

半球的表面積為2πr2,

所以建造費用 ,定義域為(0,3].

(Ⅱ) ,…(8分)

又0<r≤3,所以y'≤0,所以建造費用 ,

在定義域(0,3]上單調(diào)遞減,所以當(dāng)r=3時建造費用最小


【解析】(Ⅰ)根據(jù)題意由圓柱的體積可求出r的取值范圍,再利用幾何體的表面積等于圓柱的側(cè)面積加上半球的表面積進而得到建造費用的函數(shù)解析式。(Ⅱ)利用求導(dǎo)函數(shù)的增減性而得到該函數(shù)在指定區(qū)間內(nèi)的最值。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的定義域為,的取值范圍;

(2)設(shè)函數(shù),若對任意,總有的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體中, 平面, , , .

求四面體的四個面的面積中,最大的面積是多少?

Ⅱ)證明:在線段上存在點,使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一塊形狀為四棱柱的木料, 分別為的中點.

(1)要經(jīng)過將木料鋸開,在木料上底面內(nèi)應(yīng)怎樣畫線?請說明理由;

(2)若底面是邊長為2的菱形, 平面,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對任意實數(shù)均有,其中常數(shù)為負數(shù),且在區(qū)間上有表達式.

(1)寫出上的表達式,并寫出函數(shù)上的單調(diào)區(qū)間(不用過程,直接寫出即可);

(2)求出上的最小值與最大值,并求出相應(yīng)的自變量的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的函數(shù)上的偶函數(shù),且在區(qū)間上的最大值為10. 設(shè)

求函數(shù)的解析式;

若不等式上恒成立,求實數(shù)的取值范圍;

是否存在實數(shù),使得關(guān)于的方程有四個不相等的實 數(shù)根?如果存在,求出實數(shù)的范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)參加學(xué)校自主招生3門課程的考試,假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績概率為 ,第二、第三門課程取得優(yōu)秀成績的概率分別為p,q(p<q),且不同課程是否取得優(yōu)秀成績相互獨立,記ξ為該生取得優(yōu)秀成績的課程數(shù),其分布列為

ξ

0

1

2

3

p

x

y

(Ⅰ)求該生至少有1門課程取得優(yōu)秀成績的概率及求p,q的值;
(Ⅱ)求該生取得優(yōu)秀成績課程門數(shù)的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱中, , , ,點是線段上的動點.

(1)當(dāng)點的中點時,求證: 平面;

(2)線段上是否存在點,使得平面平面?若存在,試求出的長度;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若三邊的長為連續(xù)的三個正整數(shù),且A>B>C,3b=20acos A,則sin A:sin B:sin C為

查看答案和解析>>

同步練習(xí)冊答案