【題目】如圖,已知平面四邊形中,為的中點(diǎn),,,且.將此平面四邊形沿折成直二面角,連接、、.
(Ⅰ)證明:平面平面;
(Ⅱ)求直線與平面所成角的正弦值.
【答案】(Ⅰ)見解析(Ⅱ)
【解析】
(Ⅰ)通過證明,可得平面,進(jìn)而可證明平面平面;
(Ⅱ)以為原點(diǎn)建立空間直角坐標(biāo)系,求出平面的法向量為以及,通過向量的夾角公式可得直線與平面所成角的正弦值.
解:(Ⅰ)因?yàn)?/span>,,
所以直二面角的平面角為,
則平面,又平面,
所以,
又,
則
即,而,平面,平面,
故平面,因?yàn)?/span>平面,
所以平面平面;
(Ⅱ)由(Ⅰ)知,,,,則以為原點(diǎn)建立空間直角坐標(biāo)系如圖所示,
則,,,,
,,設(shè)平面的法向量為,
則,
令,得平面的一個(gè)法向量,
又,
則得,
記直線與平面所成角為,則知,
故所求角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機(jī)的普及,手機(jī)計(jì)步軟件迅速流行開來,這類軟件能自動(dòng)記載每個(gè)人每日健步的步數(shù),從而為科學(xué)健身提供一定的幫助.某市工會(huì)為了解該市市民每日健步走的情況,從本市市民中隨機(jī)抽取了2000名市民(其中不超過40歲的市民恰好有1000名),利用手機(jī)計(jì)步軟件統(tǒng)計(jì)了他們某天健步的步數(shù),并將樣本數(shù)據(jù)分為,,,,,,,,九組(單位;千步),將抽取的不超過40歲的市民的樣本數(shù)據(jù)繪制成頻率分布直方圖如圖,將40歲以上的市民的樣本數(shù)據(jù)繪制成頻數(shù)分布表如下,并利用該樣本的頻率分布估計(jì)總體的概率分布.
分組(單位 千步) | |||||||||
頻數(shù) | 10 | 20 | 20 | 30 | 400 | 200 | 200 | 100 | 20 |
(1)現(xiàn)規(guī)定,日健步步數(shù)不低于13000步的為“健步達(dá)人”,填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有99.9%的把握認(rèn)為是否為“健步達(dá)人”與年齡有關(guān);
健步達(dá)人 | 非健步達(dá)人 | 總計(jì) | |
40歲以上的市民 | |||
不超過40歲的市民 | |||
總計(jì) |
(2)利用樣本平均數(shù)和中位數(shù)估計(jì)該市不超過40歲的市民日健步步數(shù)(單位:千步)的平均數(shù)和中位數(shù);
(3)若日健步步數(shù)落在區(qū)間內(nèi),則可認(rèn)為該市民”運(yùn)動(dòng)適量”,其中,分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可求得頻率分布直方圖中數(shù)據(jù)的標(biāo)準(zhǔn)差約為3.64.若一市民某天的健步步數(shù)為2萬步,試判斷該市民這天是否“運(yùn)動(dòng)適量”?
參考公式:
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,各項(xiàng)為正的等比數(shù)列的前項(xiàng)和為,,,__________.在①;②;③這三個(gè)條件中任選其中一個(gè),補(bǔ)充在橫線上,并完成下面問題的解答(如果選擇多個(gè)條件解答,則以選擇第一個(gè)解答記分).
(1)求數(shù)列和的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓的上、下頂點(diǎn)分別為, 點(diǎn)是橢圓上異于的任意一點(diǎn), 軸, 為垂足, 為線段中點(diǎn),直線交直線于點(diǎn), 為線段的中點(diǎn),若四邊形的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象如圖所示,給出四個(gè)函數(shù):①,②,③,④,又給出四個(gè)函數(shù)的圖象,則正確的匹配方案是( ).
A.①-甲,②-乙,③-丙,④-丁B.②-甲,①-乙,③-丙,④-丙
C.①-甲,③-乙,④-丙,②-丁D.①-甲,④-乙,③-丙,②-丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的內(nèi)角、、的對(duì)邊分別為、、,且.
(Ⅰ)求;
(Ⅱ)若,,如圖,為線段上一點(diǎn),且,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:
甲說:“是或作品獲得一等獎(jiǎng)”; 乙說:“ 作品獲得一等獎(jiǎng)”;
丙說:“ 兩件作品未獲得一等獎(jiǎng)”; 丁說:“是作品獲得一等獎(jiǎng)”.
評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓上頂點(diǎn)為A,右焦點(diǎn)為F,直線與圓相切,其中.
(1)求橢圓的方程;
(2)不過點(diǎn)A的動(dòng)直線l與橢圓C相交于P,Q兩點(diǎn),且,證明:動(dòng)直線l過定點(diǎn),并且求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com