甲、乙、丙三位同學(xué)彼此獨立地從A、B、C、D、E五所高校中,任選2所高校參加自主招生考試(并且只能選2所高校),但同學(xué)甲特別喜歡A高校,他除選A校外,在B、C、D、E中再隨機選1所;同學(xué)乙和丙對5所高校沒有偏愛,都在5所高校中隨機選2所即可.
(Ⅰ)求甲同學(xué)未選中E高校且乙、丙都選中E高校的概率;
(Ⅱ)記X為甲、乙、丙三名同學(xué)中未參加E校自主招生考試的人數(shù),求X的分布列及數(shù)學(xué)期望.
考點:離散型隨機變量的期望與方差,古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:(Ⅰ)由已知條件分別求出甲同學(xué)選中E高校的概率和乙、兩同學(xué)選取中E高校的概率,由此能求出甲同學(xué)未選中E高校且乙、丙都選中E高校的概率.
(Ⅱ)由題意知:X所有可能的取值為0,1,2,3,分另求出P(X=0),P(X=1),P(X=2),P(X=3),由此能求出X的分布列和EX.
解答: 解:(Ⅰ)由題意知:甲同學(xué)選中E高校的概率為p=
1
4
,
乙、兩同學(xué)選取中E高校的概率為p=p=
C
1
4
C
2
5
=
2
5
,
∴甲同學(xué)未選中E高校且乙、丙都選中E高校的概率為:
P(1-p)•p•p=(1-
1
4
)•
2
5
2
5
=
3
25

(Ⅱ)由題意知:X所有可能的取值為0,1,2,3,
P(X=0)=p•p•p=
1
4
×(
2
5
)2
=
1
25

P(X=1)=(1-p)•p•p+p•(1-p)•p+p•p•(1-p
=(1-
1
4
)•
2
5
2
5
+
1
4
•(1-
2
5
)•
2
5
+
1
4
2
5
•(1-
2
5
)
=
6
25
,
P(X=2)=(1-p)•(1-p)•p+(1-p)•p•(1-p)+p•(1-p)•(1-p
=(1-
1
4
)•(1-
2
5
)•
2
5
+(1-
1
4
)•
2
5
•(1-
2
5
)
+
1
4
•(1-
2
5
)•(1-
2
5
)
=
9
20

P(X=3)=(1-p)•(1-p)•(1-p)=(1-
1
4
)•(1-
2
5
)•(1-
2
5
)
=
27
100
,
∴X的分布列為:
 X  0  1  2  3
P  
1
25
 
6
25
 
9
20
 
27
100
∴EX=0×
1
25
+1×
6
25
+2×
9
20
+3×
27
100
=
39
20
點評:本題考查概率的計算,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是中檔題,在歷年高考中都是必考題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

z=x-y在
2x-y+1≥0
x-2y-1≤0
x+y≤1
的線性約束條件下,取得最大值的可行解為( 。
A、(0,1)
B、(-1,-1)
C、(1,0)
D、(
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD (如圖1)中,AB=4,BC=5,對角線AC=3,將三角形△ACD沿AC折起至△PAC位置(圖2),使二面角P-AC-B為60°,G,H分別是PA,PC的中點.
(Ⅰ)求證:PC⊥平面BGH;
(Ⅱ)求平面PAB與平面BGH夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1 
(a>b>0)的右焦點F,拋物線:x2=4
2
y的焦點為橢圓C的上頂點,且直線l交橢圓C于A、B兩點,點A、F、B在直線g:x=3上的射影依次為點D、K、E.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l交y軸于點M,且
MA
1
AF
,
MB
2
BF
.證明:λ12的值定值;
(Ⅲ)連接AE、BD,直線AE與BD是否相交于定點?若是,請求出定點的坐標(biāo),并給予證明;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1 
(a>b>0)的右焦點F,拋物線:x2=4
2
y的焦點為橢圓C的上頂點,且直線l交橢圓C于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l交y軸于點M,且
MA
=λ1
AF
MB
=λ2
BF
.試判斷λ12的值是否為定值,若是求出定值,不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的弦,CD是AB的垂直平分線,切線AE與DC的延長線相交于E.若AB=24,AE=20,則圓O的半徑R=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=ex定義域中的任意的x1,x2(x1≠x2),有如下結(jié)論:
(1)f(x1x2)=f(x1)+f(x2);    
(2)f(x1+x2)=f(x1)f(x2);
(3)
f(x1)-f(x2)
x1-x2
<0;       
 (4)
f(x1)-f(x2)
x1-x2
>0
;
(5)f(
x1+x2
2
)<
f(x1)+f(x2)
2

上述結(jié)論中正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個命題的逆命題、否命題、逆否命題中有且只有一個是真命題,我們就把這個命題叫做“正向真命題”,給出下列命題:
①函數(shù)y=x2(x∈R)為偶函數(shù);   
②若
a
c
=
b
c
,則
a
=
b

③若四點不共面,則這四點中任何三點都不共線;
其中是“正向真命題”的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的個數(shù)是( 。
(1)若
a
為單位向量,且
b
a
,|
b
|
=1,則
a
=
b
;   
(2)若|
a
|
=0,則
a
=0
(3)若
b
a
,則|
b
|=|
a
|
;   
(4)若k
a
=
0
,則必有k=0(k∈R);   
(5)若k∈R,則k•
0
=0
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案