【題目】已知橢圓與雙曲線有公共的焦點,的一條漸近線與以的長軸為直徑的圓相交于兩點,若恰好將線段三等分,則
A.B.C.D.
【答案】B
【解析】
先由雙曲線方程確定一條漸近線方程為y=2x,根據(jù)對稱性易知AB為圓的直徑且AB=2a,利用橢圓與雙曲線有公共的焦點,得方程a2-b2=5;設(shè)C1與y=2x在第一象限的交點的坐標(biāo),代入C1的方程得;由對稱性求得直線y=2x被C1截得的弦長,根據(jù)C1恰好將線段AB三等分得出a2,b2的值,故可得結(jié)論.
由題意, C2的焦點為,一條漸近線方程為y=2x,根據(jù)對稱性易知AB為圓的直徑且AB=2a
∴C1的半焦距,于是得 ①
設(shè)C1與y=2x在第一象限的交點的坐標(biāo)為(m,2m),代入C1的方程得:②,
由對稱性知直線y=2x被C1截得的弦長,
由題得:,所以 ③
由②③得 ④
由①④得
故選C
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)求曲線在點處的切線方程;
(Ⅱ)當(dāng)時,求證:函數(shù)存在極小值;
(Ⅲ)請直接寫出函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直角梯形中,,,,四邊形為矩形,.
(1)求證:平面平面;
(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以為頂點,母線長為的圓錐中,底面圓的直徑長為2,是圓所在平面內(nèi)一點,且是圓的切線,連接交圓于點,連接,.
(1)求證:平面平面;
(2)若是的中點,連接,,當(dāng)二面角的大小為時,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地種植常規(guī)稻和雜交稻,常規(guī)稻的畝產(chǎn)穩(wěn)定為485公斤,今年單價為3.70元/公斤,估計明年單價不變的可能性為,變?yōu)?/span>3.90元/公斤的可能性為,變?yōu)?/span>4.00的可能性為.統(tǒng)計雜交稻的畝產(chǎn)數(shù)據(jù),得到畝產(chǎn)的頻率分布直方圖如圖①.統(tǒng)計近10年雜交稻的單價(單位:元/公斤)與種植畝數(shù)(單位:萬畝)的關(guān)系,得到的10組數(shù)據(jù)記為,并得到散點圖如圖②.
(1)根據(jù)以上數(shù)據(jù)估計明年常規(guī)稻的單價平均值;
(2)在頻率分布直方圖中,各組的取值按中間值來計算,求雜交稻的畝產(chǎn)平均值;以頻率作為概率,預(yù)計將來三年中至少有二年,雜交稻的畝產(chǎn)超過795公斤的概率;
(3)①判斷雜交稻的單價(單位:元/公斤)與種植畝數(shù)(單位:萬畝)是否線性相關(guān)?若相關(guān),試根據(jù)以下的參考數(shù)據(jù)求出關(guān)于的線性回歸方程;
②調(diào)查得知明年此地雜交稻的種植畝數(shù)預(yù)計為2萬畝.若在常規(guī)稻和雜交稻中選擇,明年種植哪種水稻收入更高?
統(tǒng)計參考數(shù)據(jù):,,,,
附:線性回歸方程,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買1臺機(jī)器,該種機(jī)器使用三年后即被淘汰.在購進(jìn)機(jī)器時,可以一次性額外購買次維修,每次維修費用300元,另外實際維修一次還需向維修人員支付上門服務(wù)費80元.在機(jī)器使用期間,如果維修次數(shù)超過購買的次時,則超出的維修次數(shù),每次只需支付維修費用700元,無需支付上門服務(wù)費.需決策在購買機(jī)器時應(yīng)同時一次性購買幾次維修,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得到下面統(tǒng)計表:
維修次數(shù) | 6 | 7 | 8 | 9 | 10 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
記表示1臺機(jī)器在三年使用期內(nèi)的維修次數(shù),表示1臺機(jī)器維修所需的總費用(單位:元).
(1)若,求與的函數(shù)解析式;
(2)假設(shè)這100臺機(jī)器在購機(jī)的同時每臺都購買8次維修,或每臺都購買9次維修,分別計算這100臺機(jī)器在維修上所需總費用的平均數(shù),并以此作為決策依據(jù),購買1臺機(jī)器的同時應(yīng)購買8次還是9次維修?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某貧困地區(qū)扶貧辦積極貫徹落實國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加,為了更好的制定2019年關(guān)于加快提升農(nóng)民年收入力爭早日脫貧的工作計劃,該地扶貧辦隨機(jī)統(tǒng)計了2018年50位農(nóng)民的年收入并制成如下頻率分布直方圖:
(Ⅰ)根據(jù)頻率分布直方圖,估計50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);
(Ⅱ)由頻率分布直方圖可認(rèn)為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求:
(i)在2018年脫貧攻堅工作中,該地區(qū)約有的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?
(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實情況,扶貧辦隨機(jī)走訪了1000位農(nóng)民.若每個農(nóng)民的年收入相互獨立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)約為多少?
參考數(shù)據(jù):.若,則;;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國,緊跟黨走”為主題的黨史知識競賽。從參加競賽的學(xué)生中,隨機(jī)抽取40名學(xué)生,將其成績分為六段,,,,,,到如圖所示的頻率分布直方圖.
(1)求圖中的值及樣本的中位數(shù)與眾數(shù);
(2)若從競賽成績在與兩個分?jǐn)?shù)段的學(xué)生中隨機(jī)選取兩名學(xué)生,設(shè)這兩名學(xué)生的競賽成績之差的絕對值不大于分為事件,求事件發(fā)生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com