【題目】如圖所示,直角梯形中,,,,四邊形為矩形,.
(1)求證:平面平面;
(2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng),若不存在,請(qǐng)說明理由.
【答案】(1)見解析;(2)存在,長(zhǎng)
【解析】
(1)先證面,又因?yàn)?/span>面,所以平面平面.
(2)根據(jù)題意建立空間直角坐標(biāo)系. 列出各點(diǎn)的坐標(biāo)表示,設(shè),則可得出
向量,求出平面的法向量為,利用直線與平面所成角的正弦公式列方程求出或,從而求出線段的長(zhǎng).
解:(1)證明:因?yàn)樗倪呅?/span>為矩形,
∴.
∵∴
∴∴面
∴面
又∵面
∴平面平面
(2)取為原點(diǎn),所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系.
如圖所示:則,,,,,
設(shè),;
∴,,
設(shè)平面的法向量為,
∴,不防設(shè).
∴,
化簡(jiǎn)得,解得或;
當(dāng)時(shí),,∴;
當(dāng)時(shí),,∴;
綜上存在這樣的點(diǎn),線段的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓與軸交于 兩點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),且直線與直線分別交于 兩點(diǎn).是否存在點(diǎn)使得以 為直徑的圓經(jīng)過點(diǎn)?若存在,求出點(diǎn)的橫坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次公里的自行車個(gè)人賽中,25名參賽選手的成績(jī)(單位:分鐘)的莖葉圖如圖所示:
(1)現(xiàn)將參賽選手按成績(jī)由好到差編為1~25號(hào),再用系統(tǒng)抽樣方法從中選取5人,已知選手甲的成績(jī)?yōu)?5分鐘,若甲被選取,求被選取的其余4名選手的成績(jī)的平均數(shù);
(2)若從總體中選取一個(gè)樣本,使得該樣本的平均水平與總體相同,且樣本的方差不大于7,則稱選取的樣本具有集中代表性,試從總體(25名參賽選手的成績(jī))選取一個(gè)具有集中代表性且樣本容量為5的樣本,并求該樣本的方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若,求證:時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,側(cè)棱底面,,點(diǎn)為的中點(diǎn),作,交于點(diǎn).
(1)求證:平面;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解高一學(xué)生的心理健康狀況,某校心理健康咨詢中心對(duì)該校高一學(xué)生的睡眠狀況進(jìn)行了抽樣調(diào)查.該中心隨機(jī)抽取了60名高一男生和40名高一女生,統(tǒng)計(jì)了他們?nèi)雽W(xué)第一個(gè)月的平均每天睡眠時(shí)間,得到如下頻數(shù)分布表.規(guī)定:“平均每天睡眠時(shí)間大于等于8小時(shí)”為“睡眠充足”,“平均每天睡眠時(shí)間小于8小時(shí)”為“睡眠不足”.
高一男生平均每天睡眠時(shí)間頻數(shù)分布表
睡眠時(shí)間(小時(shí)) | |||||
頻數(shù) | 3 | 20 | 19 | 10 | 8 |
高一女生平均每天睡眠時(shí)間頻數(shù)分布表
睡眠時(shí)間(小時(shí)) | |||||
頻數(shù) | 20 | 11 | 5 | 2 |
(1)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并根據(jù)已完成的列聯(lián)表,判斷是否有的把握認(rèn)為“睡眠是否充足與性別有關(guān)”?
睡眠充足 | 睡眠不足 | 合計(jì) | |
男生 | 42 | ||
女生 | 7 | ||
合計(jì) | 100 |
(2)由樣本估計(jì)總體的思想,根據(jù)這兩個(gè)頻數(shù)分布表估計(jì)該校全體高一學(xué)生入學(xué)第一個(gè)月的平均每天睡眠時(shí)間(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表);
(3)若再?gòu)倪@100人中平均每天睡眠時(shí)間不足6小時(shí)的同學(xué)里隨機(jī)抽取兩人進(jìn)行心理健康干預(yù),則抽取的兩人中包含女生的概率是多少?
附:參考公式:.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與雙曲線有公共的焦點(diǎn),的一條漸近線與以的長(zhǎng)軸為直徑的圓相交于兩點(diǎn),若恰好將線段三等分,則
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某書店銷售剛剛上市的某高二數(shù)學(xué)單元測(cè)試卷,按事先擬定的價(jià)格進(jìn)行5天試銷,每種單價(jià)試銷1天,得到如下數(shù)據(jù):
單價(jià)x/元 | 18 | 19 | 20 | 21 | 22 |
銷量y/冊(cè) | 61 | 56 | 50 | 48 | 45 |
(1)求試銷天的銷量的方差和關(guān)于的回歸直線方程;
附: .
(2)預(yù)計(jì)以后的銷售中,銷量與單價(jià)服從上題中的回歸直線方程,已知每?jī)?cè)單元測(cè)試卷的成本是10元,為了獲得最大利潤(rùn),該單元測(cè)試卷的單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:交雙曲線:于,兩點(diǎn),過作直線的垂線交雙曲線于點(diǎn).若,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com