下列各點(diǎn)中不在不等式組
x+y≤1
x≥0
y≥0
表示的平面區(qū)域內(nèi)的是( 。
A、(1,1)
B、(0,0)
C、(
1
2
,
1
2
D、(
1
4
,
1
4
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:解分別驗(yàn)證點(diǎn)的坐標(biāo)是否滿足不等式組即可得到結(jié)論.
解答: 解:A,當(dāng)x=1,y=1時(shí),x+y=2≤1不成立,故(1,1)不在平面區(qū)域內(nèi).
B.當(dāng)x=0,y=0時(shí),x+y=0≤1成立,故(0,0)在平面區(qū)域內(nèi).
C.當(dāng)x=
1
2
,y=
1
2
時(shí),x+y=1≤1成立,故(
1
2
,
1
2
)在平面區(qū)域內(nèi).
D.當(dāng)x=
1
4
,y=
1
4
時(shí),x+y=
1
2
≤1成立,故(
1
4
1
4
)在平面區(qū)域內(nèi).
故選:A
點(diǎn)評(píng):本題主要考查二元一次不等式組表示平面區(qū)域,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|(x+3)(x-2)≤0},B={x|y=
1
x-1
},則A∩B( 。
A、(1,2)
B、[1,2]
C、[1,2)
D、(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合U={0,1,2,3,4},A={x|x2-2x=0},則∁UA=( 。
A、{1,2,3}
B、{0,1,3,4}
C、{1,3,4}
D、{0,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x-y+1≥0
x+y≥0
x≤0  
,則z=x+2y的最小值是(  )
A、0
B、
1
2
C、5
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在程序框圖中輸入n-14,按程序運(yùn)行后輸出的結(jié)果是(  )
A、0B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)ω=-
1
2
+
3
2
i(i為虛數(shù)單位),則(ω+1)2=( 。
A、
1
2
-
3
2
i
B、
1
2
+
3
2
i
C、-
1
2
-
3
2
i
D、-
1
2
+
3
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓(x-1)2+(y-1)2=1關(guān)于直線y=5x-4對(duì)稱的圓的方程是( 。
A、(x+1)2+(y+1)2=1
B、(x-1)2+(y-1)2=1
C、(x+1)2+(y-1)2=1
D、(x-1)2+(y+1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)E、F分別是正方體ABCD-A1B1C1D1的棱AB、AA1的中點(diǎn),點(diǎn)M、N分別是線段D1E與C1F上的點(diǎn),則滿足與平面ABCD平行的直線MN有( 。
A、0條B、1條C、2條D、無(wú)數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)證明兩角差的余弦公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ;
(2)若cosα=-
3
5
,α∈(0,π),求cos(α-
π
4
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案