【題目】汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如下表(單位:輛):按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛.

轎車

轎車

轎車

舒適型

100

150

標準型

300

450

600

(1)求的值;

(2)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取

2輛,求至少有1輛舒適型轎車的概率;

(3)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:. 把這8輛轎車的得分看成一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對 值不超過的概率.

【答案】(1) ;(2) ;(3).

【解析】試題分析:(1)根據(jù)用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有類轎車10得每個個體被抽到的概率,列出關系式,得到的值;(2)由題意知本題是一個古典概型,試驗發(fā)生包含的事件數(shù)和滿足條件的事件數(shù),可以通過列舉數(shù)出結果,根據(jù)古典概型的概率公式得到結果;(3)首先做出樣本的平均數(shù),做出試驗發(fā)生包含的事件數(shù),和滿足條件的事件數(shù),根據(jù)古典概型、型的概率公式得到結果.

1)設該廠這個月共生產(chǎn)轎車輛,由題意得,.

2)設所抽樣中有輛舒適轎車,由題意,因此抽取的容量為的樣本中,有輛舒適型轎車,3輛標準型轎車.用山表示2輛舒適型轎車,表示3輛標準轎車,表示事件在該樣本中任取2輛,其中至少有1輛,舒適轎車”,則基本事件空間包含的基本事件有

,事件包含的基本事件有:

,共個,故,即所求概率為.

(3)樣本平均數(shù),設表示事件“從樣本中任取一數(shù),該數(shù)與樣本平均數(shù)之差的絕對不超過 ”,則基本事件空間中有個基本事件,事件包括的基本事件有:,共,即所求概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:

甲商場:顧客轉動如圖所示圓盤,當指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎·

乙商場:從裝有2個白球、2個藍球和2個紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是,若從盒子中一次性摸出2球,且摸到的是2個相同顏色的球,即為中獎.

(Ⅰ)求實數(shù)的值;

(Ⅱ)試問:購買該商品的顧客在哪家商場中獎的可能性大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=2x2﹣3x+1,g(x)=ksin(x﹣ )(k≠0).
(1)設f(x)的定義域為[0,3],值域為A; g(x)的定義域為[0,3],值域為B,且AB,求實數(shù)k的取值范圍.
(2)若方程f(sinx)+sinx﹣a=0在[0,2π)上恰有兩個解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為大力提倡“厲行節(jié)約,反對浪費”,某市通過隨機詢問100名性別不同的居民是否能做到“光盤”行動,得到如下的列聯(lián)表:( )

做不到“光盤”

能做到“光盤”

45

10

30

15

附:

P(K2k)

0.10

0.05

0.025

k

2.706

3.841

5.024

參照附表,得到的正確結論是

A在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別有關”

B在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別無關”

C有90%以上的把握認為“該市居民能否做到‘光盤’與性別有關”

D有90%以上的把握認為“該市居民能否做到‘光盤’與性別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求不等式的解集;

(2)如果恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(sinx+cosx)2+2cos2x﹣2.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)當x∈[ , ]時,求函數(shù)f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),設關于的方程個不同的實數(shù)解,則的所有可能的值為(

A. 3 B. 13 C. 46 D. 346

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【河南省部分重點中學2017屆高三上學期第一次聯(lián)考】在平面直角坐標系,已知圓.

直線且被圓得的弦,求直線方程;

平面直角坐標系上的點,滿足:存在過點無窮多對相互垂直的直線它們分別與

交,且直線得的弦長與直線得的弦長相等,試求所有滿足條件的點

坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,是邊長為的棱形,且分別是的中點.

(1)證明:平面;

(2)若二面角的大小為,求點到平面的距離.

查看答案和解析>>

同步練習冊答案