【題目】設(shè)圓C滿足:①截y軸所得弦長(zhǎng)為2;②被x軸分成兩段圓弧,其弧長(zhǎng)的比為3:1,在滿足條件①、②的所有圓中,求圓心到直線l:x-2y=0的距離最小的圓的方程.
【答案】解法一 設(shè)圓的圓心為P(a,b),半徑為r,則點(diǎn)P到x軸,y軸的距離分別為|b|,|a|。由題設(shè)知圓P截x軸所得劣弧所對(duì)的圓心角為90°,∴圓P截x軸所得的弦長(zhǎng)為r,故r2=2b2。 又圓P截y軸所得的的弦長(zhǎng)為2,所以有r2=a2+1。從而得2b2-a2=1。又點(diǎn)P(a,b)到直線x-2y=0的距離為d=,所以5d2=|a-2b|2=a2+4b2-4ab≥a2+4b2-2(a2+b2)=2b2-a2=1,當(dāng)且僅當(dāng)a=b時(shí),上式等號(hào)成立,從而要使d取得最小值,則應(yīng)有,解此方程組得或。又由r2=2b2知r=。于是,所求圓的方程是(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2。------10分
解法二 同解法一得d=,∴a-2b=±d,得a2=4b2±bd+5d2①
將a2=2b2-1代入①式,整理得2b2±4bd+5d2+1="0 " ② 把它看作b的二次方程,由于方程有實(shí)根,故判別式非負(fù),即△=8(5d2-1)≥0,得5d2≥1。所以5d2有最小值1,從而d有最小值。將其代入②式得2b2±4b+2=0,解得b=±1。將b=±1代入r2=2b2得r2=2,由r2=a2+1得a=±1。綜上a=±1,b=±1,r2=2。由|a-2b|=1知a,b同號(hào)。于是,所求圓的方程是(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2。--------10分
【解析】
試題本題考察的是求圓的方程,圓被軸分成兩段圓弧,其弧長(zhǎng)的比為,劣弧所對(duì)的圓心角為,設(shè)圓的圓心為,圓截軸所得的弦長(zhǎng)為,截軸所得弦長(zhǎng)為2,可得圓心軌跡方程,圓心到直線的距離最小,利用基本不等式,求得圓的方程.
試題解析:設(shè)圓心為,半徑為.
則到軸、軸的距離分別為和.
由題設(shè)知:圓截軸所得劣弧所對(duì)的圓心角為,故圓截軸所得弦長(zhǎng)為.
∴(6分)
又圓截軸所得弦長(zhǎng)為2.
∴.又∵到直線的距離為
(10分)∴.∴.
將代入上式得:.
上述方程有實(shí)根,故
,
∴.
將代入方程得.
又∴.
由知、同號(hào).
故所求圓的方程為或.(14分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量與平行.
(1)求A;
(2)若,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸媽媽、爺爺奶奶一同參加《中國(guó)詩詞大會(huì)》的現(xiàn)場(chǎng)錄制,5人坐成一排.若小 明的父母至少有一人與小明相鄰,則不同的坐法總數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,點(diǎn)坐標(biāo)是,曲線的方程為;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,斜率是的直線經(jīng)過點(diǎn).
(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)求證直線和曲線相交于兩點(diǎn)、,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)與y=g(x)的圖象如圖所示,則函數(shù)y=f(x)g(x)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)在定義域(0,+∞)上為增函數(shù),且滿足f(xy)=f(x)+f(y),f(3)=1
(1)求f(9),f(27)的值
(2)解不等式f(x)+f(x﹣8)<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+)(ω>0,| |)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+ | 0 |
| π |
| 2π |
x |
|
| |||
Asin(ωx+) | 0 | 5 | ﹣5 | 0 |
(1)請(qǐng)?jiān)诖痤}卡上將如表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)個(gè)單位長(zhǎng)度,得到y=g(x)圖象,求y=g(x)的圖象離原點(diǎn)O最近的對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的一年收益與投資額成正比,其關(guān)系如圖(1);投資股票等風(fēng)險(xiǎn)型產(chǎn)品的一年收益與投資額的算術(shù)平方根成正比,其關(guān)系如圖(2).(注:收益與投資額單位:萬元)
(1)分別寫出兩種產(chǎn)品的一年收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com