【題目】已知全集U為R,集合A={x|x2<4},B= (x﹣2)},則下列關(guān)系正確的是(
A.A∪B=R
B.A∪(B)=R
C.(A)∪B=R
D.A∩(B)=A

【答案】D
【解析】解:全集U為R,集合A={x|x2<4}={x|﹣2<x<2},
B= (x﹣2)}={x|x﹣2>0}={x|x>2},
A∪B={x|x>﹣2且x≠2},A錯(cuò)誤;
UB={x|x≤2},A∪(UB)={x|x≤2},B錯(cuò)誤;
UA={x|x≤﹣2或x≥2},∴(UA)∪B={x|x≤﹣2或x≥2},C錯(cuò)誤;
A∩(UB)={x|﹣2<x<2}=A,D正確.
故選:D.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用交、并、補(bǔ)集的混合運(yùn)算,掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某市舉辦青少年運(yùn)動(dòng)會(huì)上,7位裁判為某武術(shù)隊(duì)員打出的分?jǐn)?shù)的莖葉圖,左邊數(shù)字表示十位數(shù)字,右邊數(shù)字表示個(gè)位數(shù)字,這些數(shù)據(jù)的中位數(shù)是( ),去掉一個(gè)最低分和最高分所剩數(shù)據(jù)的平均數(shù)是(
A.86.5,86.7
B.88,86.7
C.88,86.8
D.86,5,86.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)無(wú)窮等差數(shù)列{an}的前n項(xiàng)和為Sn , 已知a1=1,S3=12.
(1)求a24與S7的值;
(2)已知m、n均為正整數(shù),滿足am=Sn . 試求所有n的值構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集是空集,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足(2b﹣c)cosA﹣acosC=0.
(1)求角A的大;
(2)若a=4,求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一組數(shù)據(jù)3,4,5,a,b的平均數(shù)是4,中位數(shù)是m,從3,4,5,a,b,m這組數(shù)據(jù)中任取一數(shù),取到數(shù)字4的概率為 ,那么3,4,5,a,b這組數(shù)據(jù)的方差為(
A.
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣a|+2x(a∈R)
(1)當(dāng)a=4時(shí),解不等式f(x)≥8;
(2)當(dāng)a∈[0,4]時(shí),求f(x)在區(qū)間[3,4]上的最小值;
(3)若存在a∈[0,4],使得關(guān)于x的方程f(x)=tf(a)有3個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓x2+y2=8內(nèi)有一點(diǎn)P0(﹣1,2),AB為過(guò)點(diǎn)P0且傾斜角為α的弦;
(1)當(dāng) 時(shí),求AB的長(zhǎng);
(2)當(dāng)弦AB被點(diǎn)P0平分時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求| |;
(2)已知點(diǎn)D是AB上一點(diǎn),滿足 ,點(diǎn)E是邊CB上一點(diǎn),滿足 . ①當(dāng)λ= 時(shí),求 ;
②是否存在非零實(shí)數(shù)λ,使得 ?若存在,求出的λ值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案