(2006•石景山區(qū)一模)已知x,y滿足約束條件
x≥0
y≥0
x+y≥1
,則(x+2)2+y2的最小值為
5
5
分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,(x+2)2+y2表示(-2,0)到可行域的距離的平方,只需求出(-2,0)到可行域的距離的最小值即可
解答:解:根據(jù)約束條件畫出可行域
z=(x+2)2+y2表示(-2,0)到可行域的距離的平方,
當(dāng)點B(0,1)時,距離最小,
即最小距離為
(2+0)2+12
=
5

則(x+2)2+y2的最小值是 5.
故答案為:5.
點評:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.巧妙識別目標(biāo)函數(shù)的幾何意義是研究規(guī)劃問題的基礎(chǔ),縱觀目標(biāo)函數(shù)包括線性的與非線性,非線性問題的介入是線性規(guī)劃問題的拓展與延伸,使得規(guī)劃問題得以深化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2006•石景山區(qū)一模)設(shè)復(fù)數(shù)z1=1+i,z2=2-3i,則z1•z2等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•石景山區(qū)一模)把一組數(shù)據(jù)中的每一個數(shù)據(jù)都減去80,得一組新數(shù)據(jù),若求得新數(shù)據(jù)的平均數(shù)是1.2,方差是4.4,則原來數(shù)據(jù)的平均數(shù)和方差分別是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•石景山區(qū)一模)在△ABC中,a、b、c分別是角A、B、C所對的邊,∠A=60°,b=1,△ABC的面積S△ABC=
3
,則
a+b+c
sinA+sinB+sinC
的值等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•石景山區(qū)一模)等差數(shù)列{an}的前n項和為Sn,且S2=10,S4=36,則過點P(n,an)和Q(n+2,an+2)(n∈N*)的直線的一個方向向量的坐標(biāo)可以是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•石景山區(qū)一模)在(x3+
2x2
)5
的展開式中,x5的系數(shù)是
40
40
;各項系數(shù)的和是
243
243
.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案